
Further More on Key Wrapping

Yasushi Osaki and Tetsu Iwata

Dept. of Computational Science and Engineering, Nagoya University, Japan
y ozaki@echo.nuee.nagoya-u.ac.jp, iwata@cse.nagoya-u.ac.jp

Abstract. At SAC 2009, Gennaro and Halevi showed that a key wrapping scheme using a universal
hash function and ECB mode (a HtECB scheme) is broken, and the security of a scheme based on
a universal hash function and CBC mode (a HtCBC scheme) has been left as an open problem. In
this paper, we first generalize classical notions of universal and uniform hash functions, and propose
two new notions, where we consider the composition of the keyed hash function. We then prove that
the HtECB scheme is a secure key wrapping scheme if a universal hash function satisfies uniformity
and our notions. We further generalize the notions, and propose two more new notions for a keyed
hash function. We present a partial answer to the open problem by showing that the HtCBC scheme
using a universal hash function that also satisfies uniformity and the new notions is a secure key
wrapping scheme. We then point out that a monic polynomial hash function satisfies all the new
notions. Therefore, by combining the monic polynomial hash function with ECB mode and CBC
mode, we obtain secure and efficient key wrapping schemes.

Keywords: Key wrapping scheme, universal hash function, uniform hash function, ECB mode,
CBC mode, security proof

1 Introduction

A (symmetric) key wrapping scheme is a symmetric key primitive that is used to encrypt special-
ized data, such as cryptographic keys, without using a nonce or IV, for distribution or storage.
An authenticated key wrapping scheme, which we write AKW, additionally ensures integrity.
These schemes are widely used in practice [1, 12, 20], and NIST is in the process of specifying
an AKW scheme [19].

There are mainly two approaches in designing an AKW scheme. The first approach is the
dedicated construction. At EUROCRYPT 2006, Rogaway and Shrimpton proposed a concept
of deterministic authenticated encryption (DAE), which formalizes the strongest notion of an
authenticated encryption scheme without using a nonce or IV [22]. The security notion for
DAE schemes demands that they achieve confidentiality and integrity even if the input data
(plaintext) is chosen by an adversary, while it allows the adversary to detect a repetition of the
same plaintexts being encrypted (and nothing more). They showed that a secure DAE scheme
can be used in AKW applications. Then they proposed SIV mode as a concrete construction
of the DAE scheme, which can be seen as the dedicated construction of the AKW scheme.
Subsequent works in the dedicated designs of DAE schemes (and hence AKW schemes) include
HBS mode [13], BTM mode [14], and DCM mode [7]. Other examples are in [1].

Another approach is the construction by the generic composition, where one combines an
encryption mode and a hash function to construct an AKW scheme. This approach allows re-use
of the existing primitives, thus the implementation and the deployment are potentially easier
than the dedicated constructions. At SAC 2009, Gennaro and Halevi pointed out that the secu-
rity requirement of DAE rules out many practical and “seemingly secure” implementations [9].
For this, they proposed a security notion which states that the AKW scheme is secure if it
achieves confidentiality and integrity for random plaintexts. The notion is strictly weaker than
the security requirement for the DAE scheme. However, the notion is sufficiently strong for most
AKW applications, where the plaintext is intended to be a cryptographic key, and thus a random
plaintext, instead of that chosen by the adversary. Then they studied a wide variety of AKW

Table 1. Security of Hash-then-Encrypt constructions [9]. In the table, “secure” means that the combination
achieves provable security, “somewhat” means the security bound is worse than the birthday bound, and “broken”
means that the combination allows an attack.

Encryption\Hash XOR Linear
2nd-preimage universal

resistant hash

CTR broken broken secure secure

ECB broken somewhat secure broken

CBC broken somewhat secure open problem

masked ECB/CBC somewhat somewhat secure secure

XEX secure secure secure secure

schemes by combining elementary encryption modes with hash functions. Specifically, Gennaro
and Halevi extensively studied constructions of a so-called Hash-then-Encrypt approach, where
one first derives the hash value of the random plaintext, and then encrypts the hash value to-
gether with the plaintext to obtain the ciphertext. Their results are summarized in Table 1. They
examined combinations of XOR, Linear, 2nd-preimage resistant, and universal hash functions,
and CTR mode [17], ECB mode [17], CBC mode [17], masked ECB/CBC mode [9], and XEX
mode [21] (See [9] for definitions of XOR, Linear, and 2nd-preimage resistant hash functions).

Our Contributions. In this paper, we closely look at the security of the Hash-then-Encrypt
approach using ECB and CBC modes, which are called Hash-then-ECB (HtECB) and Hash-
then-CBC (HtCBC) schemes. In particular, we focus on the case where a universal hash function
is used as the underlying hash function. These schemes are attractive in that they allow use of
the most common encryption modes, ECB and CBC modes, which are likely deployed already
in existing systems, and there are a large number of efficient constructions of a universal hash
function including a polynomial hash function [16, 18, 4], MMH [10], Square Hash [8], NMH [10,
23], and NH [5].

From Table 1, we see that combining a universal hash function with ECB mode is broken,
which means that there exists a universal hash function such that, when used with ECB mode,
the resulting HtECB scheme allows an efficient attack. Indeed, Gennaro and Halevi showed that
such a universal hash function exists, which implies that sole requirement of being universal is
not sufficient for the security. However, we remark that this does not imply all the universal hash
functions cannot be used with ECB mode, and in particular, this does not exclude a possibility
that there exists a subset of universal hash functions that can securely be used with ECB mode.
The first contribution of this paper is to identify such a subset, a sufficient condition for the
universal hash function so that the resulting HtECB scheme becomes a secure AKW scheme.
We propose two new notions for a keyed hash function which we call universalC and uniformC

hash functions. The universalC hash function is roughly a universal hash function such that the
collision probability stays small even when some part of the input is a hash value, i.e., even when
we consider the composition of the hash function. The uniformC hash function is a uniform hash
function such that the output value is close to uniform even when some part of the input is
a hash value. Both notions are natural extensions of the classical notions of the universal and
uniform hash functions [6]. We then show that if the underlying hash function is a universal,
uniform, universalC and uniformC hash function, then the HtECB scheme is a secure AKW
scheme.

Next, we look at a HtCBC scheme that uses a universal hash function. The security of this
scheme has been left as an open problem, and conjectured to be secure in [9]. As a second
contribution of this paper, we present a partial answer to the open problem. We propose two
more new notions for a keyed hash function which we call universalCC and uniformCC hash

2

functions. They are the natural extensions of universalC and uniformC hash functions, where we
allow some part of the input being “hash value xor constant,” instead of merely a hash value.
We then show that if the underlying hash function is a universal, uniform, universalCC and
uniformCC hash function, then the HtCBC scheme is secure, giving a partial answer to the open
problem.

We then discuss that our new notions are strictly stronger than the classical notions of
universal and uniform hash functions. This may imply that constructing a hash function that
meets new notions is hard, or computationally costly. For this, we point out that a simple and
efficient construction exists, by showing that a monic polynomial hash function satisfies all the
notions considered in this paper. Therefore, by combining the monic polynomial hash function
with ECB mode and CBC mode, we obtain secure and efficient AKW schemes. We also remark
that the CBC MAC satisfies all the notions.

Remarks. We note that the focus of this paper is AKW applications, and HtECB and HtCBC
schemes that we prove secure may not maintain their security once the input data, which is
supposed to be random, is chosen by the adversary (this is at least the case for the confiden-
tiality of the HtECB scheme). We also note that dedicated DAE schemes in [22, 13, 14, 7] can
be used as secure AKW schemes, and hence, whenever possible, one should prefer these con-
structions. Practical advantages of HtECB and HtCBC schemes include that they allow re-use
of components that are already implemented in existing systems; ECB and CBC modes are the
most commonly used encryption modes, and the monic polynomial hash function can be imple-
mented efficiently from the polynomial hash function in a black-box manner. This feature helps
reducing the load of the implementation and the deployment if the underlying primitives are
already available. Finally, we note that none of the results of this paper contradicts the results
in [9]. We also note that asymmetric key-wrapping schemes are studied in [11].

2 Preliminaries

2.1 Notation

For two bit strings X and Y of the same length, X ⊕ Y is their xor. For an integer n ≥ 1,
{0, 1}n is the set of all bit strings of n bits. The set {0, 1}n is also treated as the finite field

GF(2n) of 2n elements (relative to some irreducible polynomial). We write X
$← X for sampling

an element from the set X uniformly at random and assigning its value to the variable X. For
two integers l, n ≥ 1 and a bit string X ∈ {0, 1}nl, (X[1], . . . , X[l]) is the partition of X into
n-bit strings, i.e., X[1], . . . , X[l] are the unique bit strings such that (X[1], . . . , X[l]) = X. We
write (X[1], . . . , X[l])

n← X for the partitioning operation. We use the convention that when
X ∈ {0, 1}n(l+1), the partition of X is (X[0], X[1], . . . , X[l]) and we write (X[0], . . . , X[l])

n← X.

2.2 Blockciphers

A blockcipher is a family of permutations. Throughout this paper we fix the block size n. Typical
values of n are 64 and 128. We write E : K × {0, 1}n → {0, 1}n for a blockcipher, where K is
a non-empty set of keys, K ∈ K is a key, and EK(·) is a permutation on {0, 1}n specified by
the key K. We write E−1

K (·) for the inverse permutation of EK(·). Let Perm(n) be a set of all
permutations on {0, 1}n. This set can be regarded as a blockcipher by assigning a unique key
to each permutation. We say that a permutation P (·) on {0, 1}n is a random permutation if

P (·) $← Perm(n), and we write P−1(·) for the inverse permutation of P (·).
An adversary is an oracle machine. We consider two security notions for a blockcipher.

The goal of a PRP-adversary (PseudoRandom Permutation-adversary) A is to distinguish the

3

blockcipher EK(·) from a random permutation P (·). The success probability of A is measured
by

Advprp
E (A) = Pr[AEK(·) ⇒ 1]− Pr[AP (·) ⇒ 1],

where the first probability is over the random choices of K
$← K and A’s coin (if any), and the

last is over P (·) $← Perm(n) and A’s coin (if any) [15, 2]. We also consider a stronger adversary,
an SPRP-adversary (Strong PRP-adversary), whose goal is to distinguish (EK(·), E−1

K (·)) from
(P (·), P−1(·)). The success probability of A is measured by

Advsprp
E (A) = Pr[AEK(·),E−1

K (·) ⇒ 1]− Pr[AP (·),P−1(·) ⇒ 1],

where the first probability is over the random choices of K
$← K and A’s coin (if any), and the

last is over P (·) $← Perm(n) and A’s coin (if any) [15, 2].
The resource of A is measured by the number of oracle calls and the time complexity. The

time complexity of A, which we write Time(A), is the sum of the actual running time (relative
to some fixed RAM model of computation) and its description size (relative to some standard
encoding of algorithms). The details of the big-O notation in a time complexity reference depend
on the RAM model and the choice of encoding.

2.3 Encryption Modes

The blockcipher is used to encrypt a plaintext of fixed length, n bits. A longer plaintext can
be encrypted by using an encryption mode. In this paper, we consider two encryption modes
known as ECB mode and CBC mode [17].

Throughout this paper we fix an integer l ≥ 1. This parameter corresponds to the length of
the plaintext to encrypt in n-bit blocks. Typical values of l that we intend in this paper include
l = 1, 2, 3, 4 and 8. Let D ∈ {0, 1}nl be the plaintext to encrypt.

In ECB mode, we first parse the plaintext D ∈ {0, 1}nl into n-bit blocks as (D[1], . . . , D[l])
n←

D. We then encrypt each block with the blockcipher, i.e., we let C[j]← EK(D[j]) for 1 ≤ j ≤ l.
The ciphertext is C ← (C[1], . . . , C[l]). To decrypt the ciphertext C ∈ {0, 1}nl, we first parse it
into n-bit blocks as (C[1], . . . , C[l])

n← C. We then decrypt each block with the blockcipher, i.e.,
we let D[j]← E−1

K (C[j]) for 1 ≤ j ≤ l. The plaintext is obtained by D ← (D[1], . . . , D[l]).
In CBC mode, we first parse the plaintextD ∈ {0, 1}nl into n-bit blocks as (D[1], . . . , D[l])

n←
D. Let IV ∈ {0, 1}n be an initial value and let C[0]← IV . Then, we compute C[j]← EK(D[j]⊕
C[j − 1]) for 1 ≤ j ≤ l. The ciphertext is C ← (C[0], . . . , C[l]). To decrypt the ciphertext
C ∈ {0, 1}n(l+1), we first parse it into n-bit blocks as (C[0], . . . , C[l])

n← C. Next, we let D[j]←
E−1

K (C[j])⊕ C[j − 1] for 1 ≤ j ≤ l, and the plaintext is D ← (D[1], . . . , D[l]).

2.4 Keyed Hash Functions

A keyed hash function is a family of functions. We write H : L × {0, 1}nl → {0, 1}n for a keyed
hash function, where L is a non-empty set of keys, L ∈ L is a key, and HL(·) : {0, 1}nl → {0, 1}n
is a function specified by the key L.

We present two classical notions of a universal hash function and a uniform hash function [6].

Definition 1. Let X,X ′ ∈ {0, 1}nl be arbitrary bit strings such that X ̸= X ′. A keyed hash
function H : L × {0, 1}nl → {0, 1}n is an ϵ1-universal hash function if

Pr[HL(X) = HL(X
′)] ≤ ϵ1,

where the probability is taken over the random choice of L
$← L.

4

Algorithm HtECB[H,E]-EL,K(D) Algorithm HtECB[H,E]-DL,K(C)

1. D[0]← HL(D) 1. (C[0], . . . , C[l])
n← C

2. (D[1], . . . , D[l])
n← D 2. for j ← 0 to l do

3. for j ← 0 to l do 3. D[j]← E−1
K (C[j])

4. C[j]← EK(D[j]) 4. D ← (D[1], . . . , D[l])
5. C ← (C[0], . . . , C[l]) 5. if HL(D) = D[0] then return D
6. return C 6. else return ⊥

Fig. 1. The encryption and decryption algorithms of HtECB[H,E].

Definition 2. Let X ∈ {0, 1}nl and Y ∈ {0, 1}n be arbitrary bit strings. A keyed hash function
H : L × {0, 1}nl → {0, 1}n is an ϵ2-uniform hash function if

Pr[HL(X) = Y] ≤ ϵ2,

where the probability is taken over the random choice of L
$← L.

We say that H is a universal (resp. uniform) hash function if it is an ϵ1-universal (resp. ϵ2-
uniform) hash function for sufficiently small ϵ1 (resp. ϵ2). We use similar notation for other
notions of the hash function.

3 Authenticated Key Wrapping Schemes

3.1 Definitions and Constructions

We define an authenticated key wrapping scheme, which we write AKW. The AKW scheme
consists of an encryption algorithm AKW-E and a decryption algorithm AKW-D. The encryption
algorithm AKW-E takes a plaintext D ∈ {0, 1}nl and a wrapping key W ∈ W, where W is a
non-empty set of keys, and outputs a ciphertext C ∈ {0, 1}n(l+1). We write C ← AKW-EW (D).
The decryption algorithm AKW-D takes a ciphertext C ∈ {0, 1}n(l+1) and the wrapping key
W ∈ W and outputs either the plaintext D ∈ {0, 1}nl, or a special symbol ⊥ which indicates that
the ciphertext is invalid. We write D ← AKW-DW (C) or ⊥ ← AKW-DW (C). For consistency,
for all D ∈ {0, 1}nl and W ∈ W, if C ← AKW-EW (D), we require D ← AKW-DW (C).

Gennaro and Halevi considered AKW constructions of a so-called Hash-then-Encrypt ap-
proach [9]. We describe two concrete constructions which are called Hash-then-ECB (HtECB)
and Hash-then-CBC (HtCBC) schemes.

HtECB [9]: Hash-then-ECB scheme is specified by a (keyed) hash function H and a blockcipher
E, and we write HtECB[H,E] for the HtECB scheme that uses H and E. It consists of the
encryption algorithm HtECB[H,E]-E and the decryption algorithm HtECB[H,E]-D which are
defined in Fig. 1, and the encryption algorithm is illustrated in Fig. 3.

HtCBC [9]: Hash-then-CBC scheme is also specified by a (keyed) hash function H and a block-
cipher E, and we write HtCBC[H,E] for the HtCBC scheme that uses H and E. The encryption
algorithm HtCBC[H,E]-E and the decryption algorithm HtCBC[H,E]-D are defined in Fig. 2,
and the encryption algorithm is illustrated in Fig. 4.

3.2 Security Definitions for the AKW

We follow the security definitions proposed by Gennaro and Halevi [9]. Since the AKW scheme
is used to encrypt and authenticate random plaintext, it is necessary to satisfy two security
definitions. The first one is called the security against the Random-Plaintext Attack (RPA) and
the other is called the INTegrity of ciphertext (INT).

5

Algorithm HtCBC[H,E]-EL,K(D) Algorithm HtCBC[H,E]-DL,K(C)

1. D[0]← HL(D) 1. (C[0], . . . , C[l])
n← C

2. (D[1], . . . , D[l])
n← D 2. D[0]← E−1

K (C[0])
3. C[0]← EK(D[0]) 3. for j ← 1 to l do
4. for j ← 1 to l do 4. I[j]← E−1

K (C[j])
5. I[j]← D[j]⊕ C[j − 1] 5. D[j]← I[j]⊕ C[j − 1]
6. C[j]← EK(I[j]) 6. D ← (D[1], . . . , D[l])
7. C ← (C[0], . . . , C[l]) 7. if HL(D) = D[0] then return D
8. return C 8. else return ⊥

Fig. 2. The encryption and decryption algorithms of HtCBC[H,E].

Fig. 3. The encryption algorithm of HtECB[H,E]. Fig. 4. The encryption algorithm of HtCBC[H,E].

RPA-security [9]: The goal of an RPA-adversary A is to distinguish the left-encryption oracle
$AKW-E0W (·) from the right-encryption oracle $AKW-E1W (·). The adversary can only invoke the

oracle, and when invoked, the $AKW-E0W (·) oracle chooses two plaintexts D0, D1 $← {0, 1}nl,
and A receives (D0, D1, C), where C ← AKW-EW (D0). Likewise, in the invocation of the

$AKW-E1W (·) oracle, it chooses two plaintexts D0, D1 $← {0, 1}nl, and A receives (D0, D1, C),
where C ← AKW-EW (D1). The success probability of A is measured by

Advrpa
AKW(A) = Pr[A$AKW-E0

W (·) ⇒ 1]− Pr[A$AKW-E1
W (·) ⇒ 1],

where the probabilities are over the random choices of W
$←W, coins used by the oracles, and

A’s coin (if any).

INT-security [9]: The goal of an INT-adversary A is to output a forgery. As in the game of RPA,
the INT-adversary A can only invoke the oracle, and when invoked, the random-encryption

oracle $AKW-EW (·) chooses a plaintext D
$← {0, 1}nl, and A receives (D,C), where C ←

AKW-EW (D). The adversary A subsequently outputs a challenge ciphertext C∗, and we say A
forges if C∗ is different from the ciphertexts returned to the adversary from the oracle and C∗ is
not invalid. That is, A forges if C∗ ̸∈ {C1, . . . , Cq} and ⊥ ̸← AKW-DW (C∗), where C1, . . . , Cq

denote the ciphertexts returned to the adversary. The success probability of A is measured by

Advint
AKW(A) = Pr[A$AKW-EW (·) forges],

where the probability is taken over the random choices of W
$← W, coins used by the oracle,

and A’s coin (if any).

6

Intuitively, we say that the AKW scheme is secure if Advrpa
AKW(A) and Advint

AKW(A) are
sufficiently small for any adversary A with reasonable resource, which is measured by the number
of oracle invocations and the time complexity.

4 New Notions for Keyed Hash Functions

In this section, we present our new notions for a keyed hash function H : L×{0, 1}nl → {0, 1}n.
In the following two new notions, some of the input blocks can be the hash value, i.e., we consider
the “composition” of the hash function.

Definition 3. Let X1, . . . , Xl ∈ {0, 1}nl, Z[1], . . . , Z[l] ∈ {0, 1}n and X ′ ∈ {0, 1}nl be arbitrary
bit strings such that X ′ ̸= (Z[1], . . . , Z[l]). A keyed hash function H : L × {0, 1}nl → {0, 1}n
is an ϵ3-universalC (ϵ3-universal with composition) hash function if, for each of the 2l possible
choices of X ∈ {Z[1],HL(X1)} × · · · × {Z[l],HL(Xl)}, it holds that

Pr[HL(X) = HL(X
′)] ≤ ϵ3,

where the probability is taken over the random choice of L
$← L.

For example, if l = 2, we require
Pr[HL(Z[1], Z[2]) = HL(X

′)] ≤ ϵ3,
Pr[HL(HL(X1), Z[2]) = HL(X

′)] ≤ ϵ3,
Pr[HL(Z[1],HL(X2)) = HL(X

′)] ≤ ϵ3, and
Pr[HL(HL(X1),HL(X2)) = HL(X

′)] ≤ ϵ3.

We remark that Definition 1 corresponds to above definition with X = (Z[1], . . . , Z[l]) and thus
Definition 1 is included in the above definition.

The next definition corresponds to the uniformity of the above definition.

Definition 4. Let X1, . . . , Xl ∈ {0, 1}nl, Z[1], . . . , Z[l] ∈ {0, 1}n and Y ∈ {0, 1}n be arbitrary
bit strings. A keyed hash function H : L×{0, 1}nl → {0, 1}n is an ϵ4-uniformC (ϵ4-uniform with
composition) hash function if, for each of the 2l possible choices of X ∈ {Z[1],HL(X1)} × · · · ×
{Z[l],HL(Xl)}, it holds that

Pr[HL(X) = Y] ≤ ϵ4,

where the probability is taken over the random choice of L
$← L.

We further generalize the above two notions. In the following two notions, some of the input
blocks can be “the hash value xor constant.”

Definition 5. Let X1, . . . , Xl ∈ {0, 1}nl, Z[1], . . . , Z[l] ∈ {0, 1}n, V [1], . . . , V [l] ∈ {0, 1}n and
X ′ ∈ {0, 1}nl be arbitrary bit strings such that X ′ ̸= (Z[1], . . . , Z[l]). A keyed hash function
H : L × {0, 1}nl → {0, 1}n is an ϵ5-universalCC (ϵ5-universal with composition and constant
xor) hash function if, for each of the 2l possible choices of X ∈ {Z[1],HL(X1) ⊕ V [1]} × · · · ×
{Z[l],HL(Xl)⊕ V [l]}, it holds that

Pr[HL(X) = HL(X
′)] ≤ ϵ5,

where the probability is taken over the random choice of L
$← L.

7

Definition 6. Let X1, . . . , Xl ∈ {0, 1}nl, Z[1], . . . , Z[l] ∈ {0, 1}n, V [1], . . . , V [l] ∈ {0, 1}n and
Y ∈ {0, 1}n be arbitrary bit strings. A keyed hash function H : L × {0, 1}nl → {0, 1}n is an
ϵ6-uniformCC (ϵ6-uniform with composition and constant xor) hash function if, for each of the
2l possible choices of X ∈ {Z[1],HL(X1)⊕ V [1]} × · · · × {Z[l],HL(Xl)⊕ V [l]}, it holds that

Pr[HL(X) = Y] ≤ ϵ6,

where the probability is taken over the random choice of L
$← L.

In the following sections, we show that, with these definitions, the security of HtECB and
HtCBC schemes can be proved.

5 Analysis of Hash-then-ECB Scheme

As in Table 1, at SAC 2009, Gennaro and Halevi showed that a combination of a universal hash
function and ECB mode is broken, by showing a concrete instance of a universal hash function
that leads to a successful forgery. This implies that, in general, the combination does not satisfy
INT-security.

In the following theorem, we show that the HtECB scheme is secure if the universal hash
function satisfies additional requirements of being a uniform, universalC and uniformC hash
function, under the assumption that the blockcipher is secure in sense of a PRP (for RPA) and
an SPRP (for INT).

Theorem 1. Let H : L × {0, 1}nl → {0, 1}n be an ϵ1-universal, ϵ2-uniform, ϵ3-universalC and
ϵ4-uniformC hash function, and E : K×{0, 1}n → {0, 1}n be a blockcipher. Then for any A that
invokes the oracle at most q times, there exist adversaries A′ and A′′ such that

Advrpa
HtECB[H,E](A) ≤ Advprp

E (A′) +
2q2l2

2n
+ 2q2ϵ1 + 4q2lϵ2,

Advint
HtECB[H,E](A) ≤ Advsprp

E (A′′) +
q2

2
ϵ1 + q2lϵ2 + q(l + 1)ϵ2 +max{ϵ3, ϵ4},

where A′ makes at most q(l+1) queries and A′′ makes at most (q+1)(l+1) queries. Furthermore,
Time(A′) = Time(A) +O(nlq) and Time(A′′) = Time(A) +O(nlq).

We note that ϵ1 and ϵ2 can respectively be replaced by ϵ3 and ϵ4, since an ϵ3-universalC and ϵ4-
uniformC hash function is always an ϵ3-universal and ϵ4-uniform hash function. We separate them
as it makes clear the properties needed to achieve the security notion, i.e., we see that universality
and uniformity are enough for RPA-security, while we require universalC and uniformC notions
for INT-security. It also makes possible to obtain better security bounds for a keyed hash function
such that ϵ1 < ϵ3 and ϵ2 < ϵ4.

The following lemma is the information theoretic counterpart of the above theorem, where

a random permutation P (·) $← Perm(n) is used as the blockcipher. A proof of Theorem 1, given
Lemma 1, is standard, e.g., see [2].

Lemma 1. Let H : L × {0, 1}nl → {0, 1}n be an ϵ1-universal, ϵ2-uniform, ϵ3-universalC and
ϵ4-uniformC hash function. Then for any A that invokes the oracle at most q times,

Advrpa
HtECB[H,Perm(n)](A) ≤

2q2l2

2n
+ 2q2ϵ1 + 4q2lϵ2, (1)

Advint
HtECB[H,Perm(n)](A) ≤

q2

2
ϵ1 + q2lϵ2 + q(l + 1)ϵ2 +max{ϵ3, ϵ4}. (2)

8

A proof of (1) is simple, and we first present a sketch of it. In the game of RPA, we may
without loss of generality assume that A invokes the oracle exactly q times. Let (D0

i , D
1
i , Ci)

be the tuple that A receives in the i-th invocation of the oracle, (D0
i [1], . . . , D

0
i [l])

n← D0
i and

(D1
i [1], . . . , D

1
i [l])

n← D1
i be the partitions, and D0

i [0] ← HL(D
0
i) and D1

i [0] ← HL(D
1
i) be the

output values of the hash function. Define D0
hash = {D0

i [0] : 1 ≤ i ≤ q}, D1
hash = {D1

i [0] : 1 ≤ i ≤
q}, D0

data = {D0
i [j] : 1 ≤ i ≤ q, 1 ≤ j ≤ l} and D1

data = {D1
i [j] : 1 ≤ i ≤ q, 1 ≤ j ≤ l}. Suppose

that D0
hash∪D1

hash∪D0
data∪D1

data does not contain any collisions, i.e., all the elements in D0
hash∪

D1
hash∪D0

data∪D1
data are distinct. If C1, . . . , Cq are generated by the $HtECB[H,Perm(n)]-E0L,P (·)

oracle, then C1, . . . , Cq consist of the output values of the random permutation at distinct input
points, and even if C1, . . . , Cq are generated by the $HtECB[H,Perm(n)]-E1L,P (·) oracle, we see
that C1, . . . , Cq follow exactly the same probability distribution, and hence there is no way that
A can distinguish between the two oracles. This implies that A’s success probability is bounded
by the probability that there are some collision in D0

hash ∪ D1
hash ∪ D0

data ∪ D1
data, which can be

proved to be at most 2q2l2

2n +2q2ϵ1+4q2lϵ2 from the randomness of L,D0
1, . . . , D

0
q , andD1

1, . . . , D
1
q .

A proof of (2) is more involved, and we show a full proof in Appendix A. In what follows,
we present a sketch of it. We may without loss of generality assume that A invokes the oracle
exactly q times. Let (Di, Ci) be the pair that A receives in the i-th invocation of the oracle,
(Di[1], . . . , Di[l])

n← Di be the partition, and Di[0] ← HL(Di) be the output value of the hash
function. Let (C∗[0], . . . , C∗[l])

n← C∗ be the challenge ciphertext, and D∗[j] ← P−1(C∗[j]) for
0 ≤ j ≤ l be the corresponding plaintext blocks.

Define Dhash = {Di[0] : 1 ≤ i ≤ q}, Ddata = {Di[j] : 1 ≤ i ≤ q, 1 ≤ j ≤ l}, Chash =
{Ci[0] : 1 ≤ i ≤ q}, Cdata = {Ci[j] : 1 ≤ i ≤ q, 1 ≤ j ≤ l} and Crest = {0, 1}n \ (Chash ∪ Cdata).
Note that Crest is the set of n-bit strings that are never returned to the adversary, and some of
C∗[0], . . . , C∗[l] may be in this set. We let Drest be the corresponding plaintext blocks, i.e., we
let Drest = {D∗[j] : 0 ≤ j ≤ l, C∗[j] ∈ Crest}.

We first define a bad event and, if this occurs, we give up the analysis and let the adversary
win the game of INT. Intuitively, the bad event occurs if one of the elements in Dhash is used
multiple times, i.e., if the uniqueness of D1[0], . . . , Dq[0] is lost. The bad event can be broken
into the following three cases. Case 1: There is some collision between the elements in Dhash,
Case 2: Dhash ∩Ddata ̸= ∅, and Case 3: Dhash ∩Drest ̸= ∅. It can be shown that the probabilities

are at most q2

2 ϵ1 for Case 1, q2lϵ2 for Case 2, and q(l+1)ϵ2 for Case 3, which appear as the first
three terms in (2). We note that the analysis of Case 3 requires a careful treatment in that we

have to make sure that C∗ is independent of L
$← L. See Appendix A for details.

Now it remains to show that the probability of A winning the game of INT is at most
max{ϵ3, ϵ4}. We present intuitive discussions by showing situations such that our new notions of
the keyed hash function prevent the adversary from winning the game, and the classical notions
are not sufficient for proving its security.

For simplicity consider the case l = 3 and where the adversary A invokes the oracle only
once. In this case, A obtains (D1, C1) by invoking the oracle, where D1 = (D1[1], D1[2], D1[3])
and C1 = (C1[0], C1[1], C1[2], C1[3]). At this point, A learns that C1[0] = P (HL(D1)), C1[1] =
P (D1[1]), C1[2] = P (D1[2]) and C1[3] = P (D1[3]) hold. Then, A outputs a challenge ci-
phertext C∗ = (C∗[0], C∗[1], C∗[2], C∗[3]). Recall that A wins the game of INT if D∗[0] =
HL(D

∗[1], D∗[2], D∗[3]) holds, where D∗[j] = P−1(C∗[j]) for 0 ≤ j ≤ 3.

We see that C∗[j] ∈ Chash, C∗[j] ∈ Cdata or C∗[j] ∈ Crest must hold for all 0 ≤ j ≤ 3. For
C∗[j] ∈ Chash, A knows that the corresponding D∗[j] is a hash value, and knows X such that
D∗[j] = HL(X), while D∗[j] itself is not known to A. For C∗[j] ∈ Cdata, A knows the value of
the corresponding D∗[j]. For C∗[j] ∈ Crest, we fix the randomness for D∗[j] ← P−1(C∗[j]), and
treat as if D∗[j] is a fixed constant even though A does not know its value. By doing so, we can
treat Cdata and Crest identically. We consider two cases depending on the value of C∗[0]. Case

9

A: C∗[0] ∈ Chash and Case B: C∗[0] ∈ Cdata ∪ Crest. Note that, in our example, Chash = {C1[0]},
Cdata = {C1[1], C1[2], C1[3]} and Crest is the remaining n-bit strings.

Case A includes, for instance, C∗ = (C1[0], C1[1], C1[2], C1[0]). A wins the game with this
C∗ if HL(D1) = HL(D1[1], D1[2],HL(D1)). However, we see that this situation is not covered
by Definition 1, and it is not enough to conclude that the probability is low. In fact, we show
in Sect. 7.1 that there exists a universal hash function such that this sort of probability is high.
On the other hand, this is the situation where our new notion of universalC plays a role. We
see that the probability is at most ϵ3 by setting X = (D1[1], D1[2],HL(D1)) and X ′ = D1 in
Definition 3, and thus A’s success probability is at most ϵ3. Furthermore, for any combinations of
C∗[1], C∗[2], C∗[3] ∈ Chash∪Cdata∪Crest, we see that the event HL(D1) = HL(D

∗[1], D∗[2], D∗[3])
is covered by one of the 23 cases considered in Definition 3, since D∗[j] is either “a hash value”
or “a fixed constant.” Therefore, A’s success probability is at most ϵ3 in Case A.

Case B includes, for instance, C∗ = (C1[3], C1[1], C1[2], C1[0]), and A wins the game ifD1[3] =
HL(D1[1], D1[2],HL(D1)). We see that Definition 2 is not enough to conclude that the probability
is low, and, as we show in Sect. 7.1, there exists a uniform hash function such that the probability
is high. On the other hand, this is covered by our new notion of uniformC , and the probability is
at most ϵ4 by setting X = (D1[1], D1[2],HL(D1)) and Y = D1[3] in Definition 4. Furthermore,
any combinations of C∗[1], C∗[2], C∗[3] ∈ Chash∪Cdata∪Crest is one of the 23 cases in Definition 4,
and therefore, A’s success probability is at most ϵ4 in Case B.

6 Analysis of Hash-then-CBC Scheme

As in Table 1, the security of a combination of CBC mode and a universal hash function has
been left as an open problem. We present a partial answer to the open problem by showing
that the HtCBC scheme is secure if H is a universal, uniform, universalCC and uniformCC hash
function.

Theorem 2. Let H : L× {0, 1}nl → {0, 1}n be an ϵ1-universal, ϵ2-uniform, ϵ5-universalCC and
ϵ6-uniformCC hash function, and E : K × {0, 1}n → {0, 1}n be a blockcipher. Then for any A
that invokes the oracle at most q times, there exist adversaries A′ and A′′ such that

Advrpa
HtCBC[H,E](A) ≤ Advprp

E (A′) + 2q2ϵ1 +
14q2(l + 1)2

2n
,

Advint
HtCBC[H,E](A) ≤ Advsprp

E (A′′) +
q2

2
ϵ1 + q2lϵ2 + q(l + 1)ϵ2 +max{ϵ5, ϵ6},

where A′ makes at most q(l+1) queries and A′′ makes at most (q+1)(l+1) queries. Furthermore,
Time(A′) = Time(A) +O(nlq) and Time(A′′) = Time(A) +O(nlq).

The above theorem can be proved from the following lemma, where we use a random per-

mutation P (·) $← Perm(n) as the blockcipher, by following the standard argument, e.g., see [2].

Lemma 2. Let H : L × {0, 1}nl → {0, 1}n be an ϵ1-universal, ϵ2-uniform, ϵ5-universalCC and
ϵ6-uniformCC hash function. Then for any A that invokes the oracle at most q times,

Advrpa
HtCBC[H,Perm(n)](A) ≤ 2q2ϵ1 +

14q2(l + 1)2

2n
, (3)

Advint
HtCBC[H,Perm(n)](A) ≤

q2

2
ϵ1 + q2lϵ2 + q(l + 1)ϵ2 +max{ϵ5, ϵ6}. (4)

10

A proof of (3) is similar to that of (1), and we present a brief sketch of it. We use the same
notation of (D0

i , D
1
i , Ci), (D

0
i [1], . . . , D

0
i [l])

n← D0
i , (D

1
i [1], . . . , D

1
i [l])

n← D1
i , D

0
i [0] ← HL(D

0
i)

and D1
i [0] ← HL(D

1
i). Let I0i [j] ← D0

i [j] ⊕ Ci[j − 1] and I1i [j] ← D1
i [j] ⊕ Ci[j − 1] be the

input values of the blockcipher. Define D0
hash = {D0

i [0] : 1 ≤ i ≤ q}, D1
hash = {D1

i [0] : 1 ≤
i ≤ q}, D0

data = {I0i [j] : 1 ≤ i ≤ q, 1 ≤ j ≤ l} and D1
data = {I1i [j] : 1 ≤ i ≤ q, 1 ≤ j ≤ l}.

Then A’s success probability is bounded by the probability that there are some collision in

D0
hash ∪ D1

hash ∪ D0
data ∪ D1

data, and this can be proved to be at most 2q2ϵ1 +
14q2(l+1)2

2n .

A full proof of (4) is presented in Appendix B, and a sketch is shown below. As in the analysis
of (2), we first exclude a bad event by giving up the analysis and letting the adversary win the
game. The bad event is essentially the same as the one defined in the analysis of (2), and this
corresponds to the first three terms in (4).

We next discuss that the probability of A winning the game of INT is at most max{ϵ5, ϵ6}.
We again consider the case l = 3 and where the adversary A invokes the oracle only once, and
illustrate situations such that our new notions prevent the adversary from winning the game.
Now A obtains (D1, C1) by invoking the oracle, where D1 = (D1[1], D1[2], D1[3]) and C1 =
(C1[0], C1[1], C1[2], C1[3]). Let (I1[1], I1[2], I1[3]) = (D1[1] ⊕ C1[0], D1[2] ⊕ C1[1], D1[3] ⊕ C1[2])
be the input values of the blockcipher, which are known to A. Then A outputs a challenge
ciphertext C∗. We consider C∗ = (C1[0], C1[1], C1[2], C1[0]) and (C1[3], C1[1], C1[2], C1[0]) that
we used as the examples of the analysis of (2).

For C∗ = (C1[0], C1[1], C1[2], C1[0]), A wins the game if HL(D1) = HL(I1[1]⊕ C1[0], I1[2]⊕
C1[1],HL(D1) ⊕ C1[2]), which is not covered by Definition 1 nor Definition 3, while this is the
situation where our notion of universalCC covers. We see that the probability is at most ϵ5 by
setting X = (I1[1] ⊕ C1[0], I1[2] ⊕ C1[1],HL(D1) ⊕ C1[2]) and X ′ = D1 in Definition 5, and
thus A’s success probability is at most ϵ5. By a similar argument, the probability of D∗[0] =
HL(D

∗[1], D∗[2], D∗[3]) is at most ϵ5 if P−1(C∗[0]) is “a hash value.”

For C∗ = (C1[3], C1[1], C1[2], C1[0]), A wins the game if I1[3] = HL(I1[1] ⊕ C1[3], I1[2] ⊕
C1[1],HL(D1) ⊕ C1[2]), which is not covered by Definition 2 nor Definition 4, but it is one
of the cases covered by Definition 6. We see that the probability is at most ϵ6 by setting X =
(I1[1]⊕C1[3], I1[2]⊕C1[1],HL(D1)⊕C1[2]) and Y = I1[3]. By a similar argument, the probability
of D∗[0] = HL(D

∗[1], D∗[2], D∗[3]) is at most ϵ6 if P−1(C∗[0]) is “a fixed constant.”

7 Discussions on Hash Functions

7.1 Relations between the Notions

In this subsection, we show that the new notions are strictly stronger the classical notions. Let
U,U ′ ∈ {universal,uniform, universalC , uniformC ,universalCC ,uniformCC}. We write U → U ′ if
an ϵ-U hash function, for sufficiently small ϵ, is always an ϵ′-U ′ hash function, for sufficiently
small ϵ′. Otherwise we write U ̸→ U ′.

We first consider the universality. From the definitions, we obviously have universalCC →
universalC , universalCC → universal, and universalC → universal.

Now we show universal ̸→ universalC . Consider a keyed hash functionH : {0, 1}n×{0, 1}3n →
{0, 1}n such thatHL(X[1], X[2], X[3]) = L2·X[1]⊕L·X[2]⊕X[3], where the multiplication is over
GF(2n). We see that H is a 2

2n -universal hash function, but Pr[HL(X) = HL(X
′)] = 1, where

X = (X[1], X[2], HL(X[1], X[2], X[3])) and X ′ = (0n, 0n, X[3]), and hence it is not a universalC
hash function. This also implies universal ̸→ universalCC , and hence the new notions, universalC
and universalCC , are strictly stronger than the universality.

As for the uniformity, from the definitions, we obviously have uniformCC → uniformC ,
uniformCC → uniform and uniformC → uniform.

11

We show uniform ̸→ uniformC . Consider a keyed hash function H : {0, 1}n × {0, 1}3n →
{0, 1}n such that HL(X[1], X[2], X[3]) = L3⊕L2 ·X[1]⊕L ·X[2]⊕X[3], where the multiplication
is over GF(2n). We see that H is a 3

2n -uniform hash function, but Pr[HL(X) = Y] = 1, where
X = (X[1], X[2], HL(X[1], X[2], X[3])) and Y = X[3], and hence it is not a uniformC hash
function. This also implies uniform ̸→ uniformCC .

7.2 Construction of a Hash Function

The discussions in the previous section indicate that new notions that we propose are strictly
stronger than a universal and uniform hash function. However, we show that a monic poly-
nomial hash function suffices to obtain an ϵ1-universal, ϵ2-uniform, ϵ3-universalC , ϵ4-uniformC ,
ϵ5-universalCC and ϵ6-uniformCC hash function for sufficiently small ϵ1, . . . , ϵ6.

Let L = {0, 1}n and define a keyed hash function H : L × {0, 1}nl → {0, 1}n by

HL(X) = Ll+1 ⊕ Ll ·X[1]⊕ · · · ⊕ L ·X[l], (5)

where X = (X[1], . . . , X[l]) ∈ {0, 1}nl and the multiplication is over GF(2n).

Observe that the construction is close to the polynomial hash function, the basic construction
of a universal hash function used, e.g., in [16, 18, 4], except that we always have a leading term
Ll+1. We note that it can be implemented easily from the polynomial hash function. That is,
from a polynomial hash function GL(X) = Ll+1 ·X[1]⊕ Ll ·X[2]⊕ · · · ⊕ L ·X[l+ 1], the keyed
hash function defined in (5) can be obtained by GL(1n, X[2], . . . , X[l+1]), where 1n is the n-bit
representation of integer 1. Furthermore, we note that the keyed hash function is efficient. It
can be implemented with l multiplications by using Horner’s rule.

The following lemma shows that the keyed hash function defined in (5) satisfies all the notions
with sufficiently small ϵ1, . . . , ϵ6.

Lemma 3. The keyed hash function H : L × {0, 1}nl → {0, 1}n, where L = {0, 1}n, defined
in (5) is a l

2n -universal,
l+1
2n -uniform, 2l+1

2n -universalC ,
2l+1
2n -uniformC ,

2l+1
2n -universalCC , and

2l+1
2n -uniformCC hash function.

Proof. Let X1, . . . , Xl ∈ {0, 1}nl, Z[1], . . . , Z[l] ∈ {0, 1}n, V [1], . . . , V [l] ∈ {0, 1}n, X ′ ∈ {0, 1}nl
and Y ∈ {0, 1}n be arbitrary bit strings such that X ′ ̸= (Z[1], . . . , Z[l]).

It is easy to show that H is a l
2n -universal and

l+1
2n -uniform hash function. We first show that

H is a 2l+1
2n -universalC hash function. Let Z = {Z[1], . . . , Z[l]} and H = {HL(X1), . . . ,HL(Xl)}.

Recall that X = (X[1], . . . , X[l]), and for each 1 ≤ j ≤ l, we have X[j] ∈ {Z[j],HL(Xj)}. We
say X[j] is chosen from Z if X[j] = Z[j], otherwise we say it is chosen from H. If all blocks
of X are chosen from Z, i.e., if X = (Z[1], . . . , Z[l]), we have Pr[HL(X) = HL(X

′)] ≤ l
2n since

X ′ ̸= (Z[1], . . . , Z[l]) and H is a l
2n -universal hash function. Next, let 1 ≤ s ≤ l be an integer

and consider the case where l − s blocks of X are chosen from Z and s blocks are chosen from
H. Without loss of generality, let i1, . . . , is be the s indexes such that 1 ≤ i1 < · · · < is ≤ l and
X[i1], . . . , X[is] are the s blocks that are chosen from H. Then HL(X) can be written as

HL(X) = Ll+1 ⊕ Ll · Z[1]⊕ · · · ⊕ Ll+1−i1 ·HL(Xi1)⊕ · · · ⊕ L · Z[l], (6)

by substituting X[i1] = HL(Xi1). Now we see that the right hand side of (6) has a term L2l+2−i1

since HL(Xi1) itself has a term Ll+1. We also see that the term L2l+2−i1 is not canceled when we
simplify the equation HL(X) = HL(X

′), because the highest degree term in the right hand side
is Ll+1, and we have 2l + 2− i1 ≥ l + 2. Therefore, HL(X) = HL(X

′) is a non-trivial equation
in L of degree 2l + 2− i1 ≤ 2l + 1, which implies that Pr[HL(X) = HL(X

′)] ≤ 2l+1
2n .

12

We next show that H is a 2l+1
2n -uniformC hash function. If X = (Z[1], . . . , Z[l]), i.e., if all

blocks are chosen from Z, then we have Pr[HL(X) = Y] ≤ l+1
2n since H is a l+1

2n -uniform hash
function. If l − s blocks of X are chosen from Z and s blocks are chosen from H for some
1 ≤ s ≤ l, we see that HL(X) = Y is a non-trivial equation in L of degree at most 2l + 1 by
following a similar argument as above, which implies that Pr[HL(X) = Y] ≤ 2l+1

2n .

In order to show that H is a 2l+1
2n -universalCC and 2l+1

2n -uniformCC hash function, we consider
Z = {Z[1], . . . , Z[l]} and H′ = {HL(X1) ⊕ V [1], . . . , HL(Xl) ⊕ V [l]}. We see that, changing H
to H′ does not affect the above arguments because the highest degree term in HL(X) is not
affected by the constants V [1], . . . , V [l], and we have both Pr[HL(X) = HL(X

′)] ≤ 2l+1
2n and

Pr[HL(X) = Y] ≤ 2l+1
2n for any X ∈ {Z[1],HL(X1)⊕ V [1]} × · · · × {Z[l], HL(Xl)⊕ V [l]}. ⊓⊔

We remark that a PRF (PseudoRandom Function) FL : {0, 1}nl → {0, 1}n is another example
of an ϵ1-universal, ϵ2-uniform, ϵ3-universalC , ϵ4-uniformC , ϵ5-universalCC and ϵ6-uniformCC hash
function for sufficiently small ϵ1, . . . , ϵ6. For example, the CBC MAC based on a PRP is a
PRF [2], and hence it satisfies the six notions.

7.3 Applications

By applying Lemma 3 to Theorem 1, we obtain the following corollary.

Corollary 1. Let H : L × {0, 1}nl → {0, 1}n be the keyed hash function defined in (5), and
E : K × {0, 1}n → {0, 1}n be a blockcipher. Then for any A that invokes the oracle at most q
times, there exist adversaries A′ and A′′ such that

Advrpa
HtECB[H,E](A) ≤ Advprp

E (A′) +
8q2(l + 1)2

2n
,

Advint
HtECB[H,E](A) ≤ Advsprp

E (A′′) +
3q2(l + 1)2

2n
,

where A′ makes at most q(l+1) queries and A′′ makes at most (q+1)(l+1) queries. Furthermore,
Time(A′) = Time(A) +O(nlq) and Time(A′′) = Time(A) +O(nlq).

By applying Lemma 3 to Theorem 2, we obtain the following result.

Corollary 2. Let H : L × {0, 1}nl → {0, 1}n be the keyed hash function defined in (5), and
E : K × {0, 1}n → {0, 1}n be a blockcipher. Then for any A that invokes the oracle at most q
times, there exist adversaries A′ and A′′ such that

Advrpa
HtCBC[H,E](A) ≤ Advprp

E (A′) +
16q2(l + 1)2

2n
,

Advint
HtCBC[H,E](A) ≤ Advsprp

E (A′′) +
3q2(l + 1)2

2n
,

where A′ makes at most q(l+1) queries and A′′ makes at most (q+1)(l+1) queries. Furthermore,
Time(A′) = Time(A) +O(nlq) and Time(A′′) = Time(A) +O(nlq).

8 Conclusions

In this paper, we proposed a total of four new notions of a keyed hash function. Based on the
new notions, we showed that HtECB and HtCBC schemes are secure AKW schemes, and the
result on the HtCBC scheme partially solves the open problem posed by Gennaro and Halevi [9].

13

We also showed that there exists an efficient construction of a keyed hash function that satisfies
all the six notions considered in this paper.

There are several interesting open problems. First, we still do not know the security of the
HtCBC scheme that is based only on the universality assumption. Next, it remains to identify
the missing relations between the notions of a keyed hash function. In particular, we do not know
if universalC → universalCC and uniformC → uniformCC hold. Also, it would be interesting to
examine if existing universal hash functions, e.g., MMH, Square Hash, NMH, and NH, satisfy
the notions proposed in this paper, or to see if these hash functions can be used in a black-box
manner to obtain a construction that satisfies the new notions.

Acknowledgments

The authors would like to thank Joan Daemen for pointing out a reference and the anonymous
reviewers for insightful comments. A part of this work was supported by MEXT KAKENHI,
Grant-in-Aid for Young Scientists (A), 22680001.

References

1. ANSI: Symmetric Key Cryptography for the Financial Services Industry — Wrapping of Keys and Associated
Data. X9.102-2008 (2008)

2. Bellare, M., Kilian, J., Rogaway, P.: The Security of the Cipher Block Chaining Message Authentication
Code. J. Comput. Syst. Sci. 61 (3), 362–399, 2000

3. Bellare, M., Rogaway, P.: The Security of Triple Encryption and a Framework for Code-Based Game-Playing
Proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006)

4. Bernstein, D.J.: The Poly1305-AES Message-Authentication Code. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, pp. 32–49. Springer, Heidelberg (2005)

5. Black, J., Halevi, S., Krawczyk, H., Krovetz, T., Rogaway, P.: UMAC: Fast and Secure Message Authentica-
tion. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 216–233. Springer, Heidelberg (1999)

6. Carter, J.L., Wegman, M.N.: Universal Classes of Hash Functions. J. Comput. Syst. Sci. 18 (2), 143–154,
1979

7. Chakraborty, D., Mancillas-López, C.: Double Ciphertext Mode: A Proposal for Secure Backup. IACR
Cryptology ePrint Archive: Report 2010/369, 2010

8. Etzel, M., Patel, S., Ramzan, Z.: Square Hash: Fast Message Authentication via Optimized Universal Hash
Functions. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 234–251. Springer, Heidelberg (1999)

9. Gennaro, R., Halevi, S.: More on Key Wrapping. In: Jacobson, J., Rijmen, V., Safavi-Naini, R. (eds.) SAC
2009. LNCS, vol. 5867, pp. 53–70. Springer, Heidelberg (2009)

10. Halevi, S., Krawczyk, H.: MMH: Software Message Authentication in the Gbit/second Rates. In: Biham, E.
(ed.) FSE 1997. LNCS, vol. 1267, pp. 172–189. Springer, Heidelberg (1997)

11. Halevi, S., Krawczyk, H.: One-Pass HMQV and Asymmetric Key-Wrapping. In: Gennaro, R. (ed.) PKC
2011. to appear in LNCS. Springer, Heidelberg (2011)

12. Hoyer, P., Pei, M., Machani, S.: Portable Symmetric Key Container (PSKC). IETF RFC 6030 (2010)
13. Iwata, T., Yasuda, K.: HBS: A Single-Key Mode of Operation for Deterministic Authenticated Encryption.

In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 394–415. Springer, Heidelberg (2009)
14. Iwata, T., Yasuda, K.: BTM: A Single-Key, Inverse-Cipher-Free Mode for Deterministic Authenticated En-

cryption. In: Jacobson, J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 313–330.
Springer, Heidelberg (2009)

15. Luby, M., Rackoff, C.: How to Construct Pseudorandom Permutations from Pseudorandom Functions. SIAM
J. Comput. 17 (2), 373–386, 1988

16. McGrew, D., Viega, J.: The Security and Performance of the Galois/Counter Mode (GCM) of Operation. In:
Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS, vol. 3348, pp. 343–355. Springer, Heidelberg
(2004)

17. NIST: Recommendation for Block Cipher Modes of Operation, Methods and Techniques. NIST Special
Publication 800-38A 2001 Edition, 2001

18. NIST: Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC.
NIST Special Publication 800-38D, 2007

19. NIST: http://csrc.nist.gov/groups/ST/toolkit/BCM/index.html

14

20. OASIS: Key Management Interoperability Protocol Specification Version 1.0. http://www.oasis-open.org/
(2010)

21. Rogaway, P.: Efficient Instantiations of Tweakable Blockciphers and Refinements to Modes OCB and PMAC.
In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 16–31. Springer, Heidelberg (2004)

22. Rogaway, P., Shrimpton, T.: A Provable-Security Treatment of the Key-Wrap Problem. In: Vaudenay, S.
(ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390. Springer, Heidelberg (2006)

23. Wegman, M.N., Carter, J.L.: New Hash Functions and Their Use in Authentication and Set Equality. J. Com-
put. Syst. Sci. 22 (3), 265–279, 1981

A Proof of Lemma 1, (2)

We present a proof of Lemma 1, (2) based on the code based game playing proof [3]. Without loss
of generality, we assume that A is deterministic and invokes the $HtECB[H,Perm(n)]-EL,P (·)
oracle exactly q times. Let (Di, Ci) be the plaintext-ciphertext pair that A receives in the i-th
invocation of the oracle, and let (Di[1], . . . , Di[l])

n← Di and (Ci[0], . . . , Ci[l])
n← Ci be their

partitions. By invoking the oracle q times, A receives (D1, C1), . . . , (Dq, Cq), and A subsequently
outputs a challenge ciphertext C∗. Without loss of generality, we assume that C∗ ̸∈ {C1, . . . , Cq}.
We consider four games, Game G0, . . . , G3, to complete our proof.

The first game, Game G0, precisely simulates the $HtECB[H,Perm(n)]-EL,P (·) oracle. In

Game G0 we first choose L
$← L and P (·) $← Perm(n) in the initialization phase, and when

A invokes the oracle, the game chooses Di
$← {0, 1}nl and returns (Di, Ci), where Ci ←

HtECB[H,Perm(n)]-EL,P (Di). When A outputs the challenge ciphertext C∗ after the q invo-
cations of the oracle, the game returns 1 iff ⊥ ̸← HtECB[H,Perm(n)]-DL,P (C

∗) holds. We write
GA

0 ⇒ 1 for the event that Game G0 interacting with A returns 1 (and we use a similar notation
for the remaining games), and we obviously have Advint

HtECB[H,Perm(n)](A) = Pr[GA
0 ⇒ 1].

We next define Game G1. First, instead of choosing the random permutation P (·) at the
initialization phase, Game G1 uses the lazy sampling [3]. That is, the array P (X) is initialized
to “undefined” for all X ∈ {0, 1}n and we maintain two sets, DP and RP , which keep the record
of domain and range points, respectively, that have already used. When we need a value of

P (X), the value is Y ∈ RP such that Y = P (X) if X ∈ DP . Otherwise we let Y
$← RP and

set P (X)← Y , where RP = {0, 1}n \ RP . We then let DP ← DP ∪ {X} and RP ←RP ∪ {Y }.
Similarly, when we need a value of P−1(Y), the value is X ∈ DP such that Y = P (X) if Y ∈ RP .

Otherwise we let X
$← DP and set P (X) ← Y , which is equivalent to set P−1(Y) ← X, where

DP = {0, 1}n \DP . We then let DP ← DP ∪{X} and RP ←RP ∪{Y }. Using the lazy sampling
does not change A’s success probability. Next, we see that since A can only invoke the oracle, the
adaptivity does not help in increasing or decreasing A’s success probability. Therefore, instead
of asking A to invoke the oracle q times, we assume that our adversary A can invoke the oracle
only once, and when invoked, we return the q plaintext-ciphertext pairs, (D1, C1), . . . , (Dq, Cq),
simultaneously. This does not change A’s success probability. Third, since D1, . . . , Dq are chosen
randomly from {0, 1}nl, Di = Di′ may hold for some 1 ≤ i′ < i ≤ q. We see that, unlike in
the game of RPA, the collision in {D1, . . . , Dq} does not increase A’s success probability, and

hence when we choose Di, we let Di
$← {0, 1}nl \ {D1, . . . , Di−1} rather than Di

$← {0, 1}nl.
This only increases A’s success probability. Finally, we maintain a bad flag, which is initialized
to false. This flag gets set if some “bad event” occurs. Let Di[0] ← HL(Di) for 1 ≤ i ≤ q.
Define Dhash = {Di[0] : 1 ≤ i ≤ q} and Ddata = {Di[j] : 1 ≤ i ≤ q, 1 ≤ j ≤ l}. The bad
flag gets set if there is some collision within the elements of Dhash, or some element of Dhash

and some element of Ddata collide, i.e., if Di[0] = Di′ [0] holds for some 1 ≤ i′ < i ≤ q, or
Dhash ∩Ddata ̸= ∅. Furthermore, when the bad flag gets set, we let the adversary win the game,
i.e., we let GA

1 ⇒ 1. Since this only increases the probability that the game returns 1, overall,
we have Pr[GA

0 ⇒ 1] ≤ Pr[GA
1 ⇒ 1].

15

Next, we define Game G2 in Fig. 5. After the initialization and when A invokes the oracle,
Procedure (invoke) is curried out to generate the q plaintext-ciphertext pairs. When A outputs
a challenge ciphertext C∗ = (C∗[0], . . . , C∗[l]), Procedure (C∗) is curried out to test if the
adversary wins the game, i.e., if D∗[0] = HL(D

∗[1], . . . , D∗[l]) holds where D∗[j]← P−1(C∗[j])
for 0 ≤ i ≤ l. The procedure is followed by the finalization to return the outcome of the game,
which is maintained by a win flag. We note that the lazy sampling is implicit, i.e., P (X) is
initialized to “undefined” for all X ∈ {0, 1}n, and two sets DP and RP are initialized to empty,
and they are updated when “P (X)← Y ” is carried out for some X and Y . The initialization of
the flags is also implicit. Game G2 is obtained from Game G1 as follows. In Game G1, A does
not see D1[0], . . . , Dq[0], and we delay the computation of these hash values until line 12, which
is after A outputs the challenge ciphertext. Accordingly, we generate C1[0], . . . , Cq[0] without
specifying the corresponding input values, but assuming that the input values are all distinct.
Besides, as we have delayed the computation of the hash values, we delay the evaluation of the
bad flag until line 13. Game G2 is designed to set the bad flag iff the flag gets set in Game G1.
Furthermore, we see that whenever Game G1 returns 1, Game G2 returns 1. Therefore, we have
Pr[GA

1 ⇒ 1] ≤ Pr[GA
2 ⇒ 1].

The terminal game, Game G3, is defined in Fig. 5. There is no initialization in Game G3

(except for the implicit initialization of the lazy sampling and the flags), and the sampling of

L
$← L is delayed until line 14. Procedure (invoke) and finalization are identical to those in

Game G2. Now we define three sets, Chash, Cdata and Crest. Let Chash = {Ci[0] : 1 ≤ i ≤ q},
Cdata = {Ci[j] : 1 ≤ i ≤ q, 1 ≤ j ≤ l} and Crest = {0, 1}n \ (Chash ∪ Cdata). For the challenge
ciphertext C∗ = (C∗[0], . . . , C∗[l]), some blocks may be completely new, i.e., C∗[j] ∈ Crest may
hold for some 0 ≤ j ≤ l. In Game G2, these blocks are decrypted in line 17, but in Game G3,

these blocks are decrypted in line 13, which is before the sampling of L
$← L. Adding these

blocks to RP and the corresponding input blocks to DP only increases the probability that the
bad flag gets set. Furthermore, we see Game G3 always returns 1 whenever Game G2 does, which
implies that Pr[GA

2 ⇒ 1] ≤ Pr[GA
3 ⇒ 1].

Now we have Advint
HtECB[H,Perm(n)](A) ≤ Pr[GA

3 ⇒ 1], which can be bounded as

Pr[GA
3 ⇒ 1] ≤Pr[GA

3 sets bad] (7)

+ Pr[GA
3 sets win in line 21]. (8)

It remains to evaluate (7) and (8).

First, we show (7) ≤ q2

2 ϵ1 + q2lϵ2 + q(l + 1)ϵ2. Recall that Dhash = {Di[0] : 1 ≤ i ≤ q} and
Ddata = {Di[j] : 1 ≤ i ≤ q, 1 ≤ j ≤ l}. Let Drest be the set of D∗[j]’s that are chosen in line 13.
We derive the claimed bound by fixing the randomness used to choose these D∗[j]’s. In other

words, we treat these D∗[j]’s as constants, and consider only L
$← L as the source of randomness.

There are three cases to consider. Case 1: Di[0] = Di′ [0] holds for some 1 ≤ i′ < i ≤ q, Case 2:
Dhash ∩ Ddata ̸= ∅, and Case 3: Dhash ∩ Drest ̸= ∅.

Case 1: For any fixed 1 ≤ i′ < i ≤ q, we have Pr[Di[0] = Di′ [0]] = Pr[HL(Di) = HL(Di′)] ≤ ϵ1

since H is an ϵ1-universal hash function. Therefore, Pr[GA
3 sets bad in Case 1] ≤ q2

2 ϵ1 as there

are at most q2

2 choices for (i, i′).

Case 2: For any fixed 1 ≤ i, i′ ≤ q and 1 ≤ j′ ≤ l, we have Pr[Di[0] = Di′ [j
′]] = Pr[HL(Di) =

Di′ [j
′]] ≤ ϵ2 sinceH is an ϵ2-uniform hash function. Therefore, Pr[GA

3 sets bad in Case 2] ≤ q2lϵ2
as there are at most q2l choices for (i, i′, j′).

16

Game G2

Initialize

1. L
$←− L

Procedure (invoke)

2. for i← 1 to q do

3. Di
$←− {0, 1}nl \ {D1, . . . , Di−1}, (Di[1], . . . , Di[l])

n← Di

4. for j ← 1 to l do
5. if Di[j] ∈ DP then Ci[j]← P (Di[j])

6. else Ci[j]
$←− RP , P (Di[j])← Ci[j]

7. for i← 1 to q do

8. Ci[0]
$←− RP ∪ {C1[0], . . . , Ci−1[0]}, Ci ← (Ci[0], . . . , Ci[l])

9. return ((D1, C1), . . . , (Dq, Cq))

Procedure (C∗)

10. (C∗[0], . . . , C∗[l])
n← C∗

11. for i← 1 to q do
12. Di[0]← HL(Di[1], . . . , Di[l])
13. if Di[0] ∈ DP then bad← true, win← true, go Finalize
14. P (Di[0])← Ci[0]
15. for j ← 0 to l do
16. if C∗[j] ∈ RP then D∗[j]← P−1(C∗[j])

17. else D∗[j]
$←− DP , P (D∗[j])← C∗[j]

18. if D∗[0] = HL(D
∗[1], . . . , D∗[l]) then win← true, go Finalize

Finalize

19. return win

Game G3

Procedure (invoke)
// same as Game G2

Procedure (C∗)

10. (C∗[0], . . . , C∗[l])
n← C∗

11. for j ← 1 to l do
12. if C∗[j] ̸∈ RP ∪ {C1[0], . . . , Cq[0]}
13. then D∗[j]

$←− DP , P (D∗[j])← C∗[j]

14. L
$←− L

15. for i← 1 to q do
16. Di[0]← HL(Di[1], . . . , Di[l])
17. if Di[0] ∈ DP then bad← true, win← true, go Finalize
18. P (Di[0])← Ci[0]
19. for j ← 0 to l do
20. D∗[j]← P−1(C∗[j])
21. if D∗[0] = HL(D

∗[1], . . . , D∗[l]) then win← true, go Finalize

Finalize

22. return win

Fig. 5. Game G2 (top) and G3 (bottom). Procedure (invoke) in Game G3 is identical to that in Game G2.

17

Case 3: For any fixed 1 ≤ i ≤ q and j such that D∗[j] ∈ Drest, we have Pr[Di[0] = D∗[j]] =
Pr[HL(Di) = D∗[j]] ≤ ϵ2 since H is an ϵ2-uniform hash function. Therefore, we obtain that
Pr[GA

3 sets bad in Case 3] ≤ q(l + 1)ϵ2 as there are at most q choices for i, and the cardinality
of Drest is at most (l + 1), which implies that we have at most (l + 1) choices for j.

We next prove (8) ≤ max{ϵ3, ϵ4} to complete our proof. Recall that Chash = {Ci[0] : 1 ≤ i ≤
q}, Cdata = {Ci[j] : 1 ≤ i ≤ q, 1 ≤ j ≤ l} and Crest = {0, 1}n \ (Chash ∪ Cdata). For each 0 ≤ j ≤ l,
we have C∗[j] ∈ Chash or C∗[j] ∈ Cdata ∪ Crest. As in the analysis of (7), we derive the claimed

bound based only on L
$← L by fixing the remaining randomness, and in particular D∗[j]’s

chosen in line 13 are fixed. These D∗[j]’s correspond to P−1(C∗[j]) such that C∗[j] ∈ Crest. We
consider two cases depending on how C∗[0] is chosen by the adversary. Case A: C∗[0] ∈ Chash
and Case B: C∗[0] ∈ Cdata ∪ Crest.

Case A: We have to bound Pr[D∗[0] = HL(D
∗[1], . . . , D∗[l])], where D∗[0] = HL(Di) for some

1 ≤ i ≤ q. Now for each 1 ≤ j ≤ l, D∗[j] = HL(Di′) for some 1 ≤ i′ ≤ q if C∗[j] ∈ Chash,
D∗[j] = Di′ [j

′] for some 1 ≤ i′ ≤ q and 1 ≤ j′ ≤ l if C∗[j] ∈ Cdata, and D∗[j] itself is a
constant if C∗[j] ∈ Crest. In particular, we have D∗[0] = HL(X

′), and D∗ = (D∗[1], . . . , D∗[l]) ∈
{Z[1],HL(X1)}× · · ·×{Z[l],HL(Xl)} for some constants X1, . . . , Xl, Z[1], . . . , Z[l] and X ′. This
implies that the event D∗[0] = HL(D

∗[1], . . . , D∗[l]) must be one of the 2l cases covered in
Definition 3, and we therefore have Pr[HL(Di) = HL(D

∗[1], . . . , D∗[l])] ≤ ϵ3, which proves
(8) ≤ ϵ3 in this case.

Case B: By a similar argument to Case A, we have D∗[0] = Y , and D∗ = (D∗[1], . . . , D∗[l]) ∈
{Z[1],HL(X1)} × · · · × {Z[l],HL(Xl)} for some constants X1, . . . , Xl, Z[1], . . . , Z[l] and Y , and
hence D∗[0] = HL(D

∗[1], . . . , D∗[l]) is one of the 2l events covered in Definition 4. Therefore, we
have (8) ≤ ϵ4 in this case.

This completes the proof of Lemma 1, (2). ⊓⊔

B Proof of Lemma 2, (4)

A proof is similar to that of Lemma 1, (2). Without loss of generality, we assume that A is
deterministic, invokes the $HtCBC[H,Perm(n)]-EL,P (·) oracle exactly q times, and the challenge
ciphertext C∗ always satisfy C∗ ̸∈ {C1, . . . , Cq}. We consider four games, Game G0, . . . , G3.

The first game, Game G0, precisely simulates the $HtCBC[H,Perm(n)]-EL,P (·) oracle, and
the game returns 1 iff ⊥ ̸← HtCBC[H,Perm(n)]-DL,P (C

∗). We have Advint
HtCBC[H,Perm(n)](A) =

Pr[GA
0 ⇒ 1].

In the next Game G1, we use the lazy sampling of P (·), and we change the adversary to invoke
the oracle only once by returning the q plaintext-ciphertext pairs, (D1, C1), . . . , (Dq, Cq), simul-

taneously. We also make sure that we do not choose the same Di twice by letting Di
$← {0, 1}nl \

{D1, . . . , Di−1}. Finally, we maintain a bad flag, which is set as follows. Let (Di[1], . . . , Di[l])
n←

Di and (Ci[0], . . . , Ci[l])
n← Ci be the partitions of Di and Ci. Let Di[0]← HL(Di) for 1 ≤ i ≤ q

and define Dhash = {Di[0] : 1 ≤ i ≤ q}. Besides, let Ii[j] ← Di[j] ⊕ Ci[j − 1] for 1 ≤ i ≤ q and
1 ≤ j ≤ l, and define Ddata = {Ii[j] : 1 ≤ i ≤ q, 1 ≤ j ≤ l}. The bad flag gets set if there is
some collision within the elements of Dhash, or some element of Dhash and some element of Ddata

collide, i.e., if Di[0] = Di′ [0] holds for some 1 ≤ i′ < i ≤ q, or Dhash ∩ Ddata ̸= ∅. When the bad
flag gets set, the adversary wins the game and we let GA

1 ⇒ 1. Since Game G1 returns 1 if Game
G0 returns 1, we have Pr[GA

0 ⇒ 1] ≤ Pr[GA
1 ⇒ 1].

Next, we define Game G2 in Fig. 6. Game G2 is obtained from Game G1 as follows. We
delay the computation of the hash values until line 13, and generate C1[0], . . . , Cq[0] without
specifying the corresponding input values by assuming that the input values are all distinct.

18

Game G2 sets the bad flag iff the flag gets set in Game G1, and Game G2 returns 1 if Game G1

returns 1. Therefore, we have Pr[GA
1 ⇒ 1] ≤ Pr[GA

2 ⇒ 1].

The terminal game, Game G3, is also defined in Fig. 6. In Game G3, the sampling of L
$← L

is moved to line 17, and the new blocks in the challenge ciphertext C∗ = (C∗[0], . . . , C∗[l]),
i.e., the blocks C∗[j] ̸∈ {C1[0], . . . , C1[l], . . . , Cq[0], . . . , Cq[l]}, are decrypted in lines 13 or 16. By
adding these blocks to RP and the corresponding input blocks to DP increases the probability
that the bad flag gets set. Furthermore, Game G3 always returns 1 whenever Game G2 does,
and we therefore have Pr[GA

2 ⇒ 1] ≤ Pr[GA
3 ⇒ 1].

Now we have Advint
HtCBC[H,Perm(n)](A) ≤ Pr[GA

3 ⇒ 1], which can be bounded as

Pr[GA
3 ⇒ 1] ≤Pr[GA

3 sets bad] (9)

+ Pr[GA
3 sets win in line 26]. (10)

We evaluate (9) and (10).

First, we show (9) ≤ q2

2 ϵ1 + q2lϵ2 + q(l + 1)ϵ2 by a similar argument to (7). Let Drest be
the set of D∗[0] and I∗[j]’s that are chosen in lines 13 or 16. There are three cases to consider.
Case 1: Di[0] = Di′ [0] holds for some 1 ≤ i′ < i ≤ q, Case 2: Dhash ∩ Ddata ̸= ∅, and Case 3:
Dhash ∩ Drest ̸= ∅.

Case 1: For any fixed 1 ≤ i′ < i ≤ q, we have Pr[Di[0] = Di′ [0]] = Pr[HL(Di) = HL(Di′)] ≤ ϵ1

since H is an ϵ1-universal hash function, and we have Pr[GA
3 sets bad in Case 1] ≤ q2

2 ϵ1 as there

are at most q2

2 choices for (i, i′).

Case 2: For any fixed 1 ≤ i, i′ ≤ q and 1 ≤ j′ ≤ l, we have Pr[Di[0] = Ii′ [j
′]] = Pr[HL(Di) =

Ii′ [j
′]] ≤ ϵ2 since H is an ϵ2-uniform hash function, and we have Pr[GA

3 sets bad in Case 2] ≤
q2lϵ2 as there are at most q2l choices for (i, i′, j′).

Case 3: For any fixed 1 ≤ i ≤ q, if D∗[0] ∈ Drest, then Pr[Di[0] = D∗[0]] = Pr[HL(Di) =
D∗[0]] ≤ ϵ2 since H is an ϵ2-uniform hash function. With the same reasoning, for any fixed
1 ≤ i ≤ q and j such that I∗[j] ∈ Drest, we have Pr[Di[0] = I∗[j]] = Pr[HL(Di) = I∗[j]] ≤ ϵ2.
Therefore, we have Pr[GA

3 sets bad in Case 3] ≤ q(l + 1)ϵ2 as the cardinality of Drest is at most
(l + 1).

We next show (10) ≤ max{ϵ5, ϵ6}. Let Chash = {Ci[0] : 1 ≤ i ≤ q}, Cdata = {Ci[j] : 1 ≤ i ≤
q, 1 ≤ j ≤ l} and Crest = {0, 1}n \ (Chash ∪ Cdata). For each 0 ≤ j ≤ l, we have C∗[j] ∈ Chash
or C∗[j] ∈ Cdata ∪ Crest. There are two cases to consider. Case A: C∗[0] ∈ Chash and Case B:
C∗[0] ∈ Cdata ∪ Crest.

Case A: We have to bound Pr[D∗[0] = HL(D
∗[1], . . . , D∗[l])], where D∗[0] = HL(Di) for some

1 ≤ i ≤ q. Now D∗[j] = I∗[j] ⊕ C∗[j − 1] for 1 ≤ j ≤ l. If C∗[j] ∈ Chash, then I∗[j] is a hash
value, i.e., D∗[j] = HL(Di′) ⊕ C∗[j − 1] for some 1 ≤ i′ ≤ q. If C∗[j] ∈ Cdata ∪ Crest, then I∗[j]
is a constant and thus D∗[j] is also a constant. Therefore, we have D∗ = (D∗[1], . . . , D∗[l]) ∈
{Z[1],HL(X1)⊕V [1]}× · · ·×{Z[l],HL(Xl)⊕V [l]} for some constants X1, . . . , Xl, Z[1], . . . , Z[l]
and V [1], . . . , V [l]. This implies that the event D∗[0] = HL(D

∗[1], . . . , D∗[l]) must be one of the
2l events covered in Definition 5, and hence we have (10) ≤ ϵ5 in this case.

Case B: By a similar argument to Case A, we have D∗[0] = Y , and D∗ = (D∗[1], . . . , D∗[l]) ∈
{Z[1],HL(X1)⊕V [1]}×· · ·×{Z[l],HL(Xl)⊕V [l]} for some constants X1, . . . , Xl, Z[1], . . . , Z[l],
V [1], . . . , V [l] and Y , and hence D∗[0] = HL(D

∗[1], . . . , D∗[l]) is one of the 2l events covered in
Definition 6. Therefore, we have (10) ≤ ϵ6 in this case.

This completes the proof of Lemma 2, (4). ⊓⊔

19

Game G2

Initialize

1. L
$←− L

Procedure (invoke)

2. for i← 1 to q do

3. Di
$←− {0, 1}nl \ {D1, . . . , Di−1}, (Di[1], . . . , Di[l])

n← Di

4. Ci[0]
$←− RP ∪ {C1[0], . . . , Ci−1[0]}

5. for j ← 1 to l do
6. Ii[j]← Di[j]⊕ Ci[j − 1]
7. if Ii[j] ∈ DP then Ci[j]← P (Ii[j])

8. else Ci[j]
$←− RP ∪ {C1[0], . . . , Ci[0]}, P (Ii[j])← Ci[j]

9. Ci ← (Ci[0], . . . , Ci[l])
10. return ((D1, C1), . . . , (Dq, Cq))

Procedure (C∗)

11. (C∗[0], . . . , C∗[l])
n← C∗

12. for i← 1 to q do
13. Di[0]← HL(Di[1], . . . , Di[l])
14. if Di[0] ∈ DP then bad← true, win← true, go Finalize
15. P (Di[0])← Ci[0]
16. if C∗[0] ∈ RP then D∗[0]← P−1(C∗[0])

17. else D∗[0]
$←− DP , P (D∗[0])← C∗[0]

18. for j ← 1 to l do
19. if C∗[j] ∈ RP then I∗[j]← P−1(C∗[j])

20. else I∗[j]
$←− DP , P (I∗[j])← C∗[j]

21. D∗[j]← I∗[j]⊕ C∗[j − 1]
22. if D∗[0] = HL(D

∗[1], . . . , D∗[l]) then win← true, go Finalize

Finalize

23. return win

Game G3

Procedure (invoke)
// same as Game G2

Procedure (C∗)

11. (C∗[0], . . . , C∗[l])
n← C∗

12. if C∗[0] ̸∈ RP ∪ {C1[0], . . . , Cq[0]}
13. then D∗[0]

$←− DP , P (D∗[0])← C∗[0]
14. for j ← 1 to l do
15. if C∗[j] ̸∈ RP ∪ {C1[0], . . . , Cq[0]}
16. then I∗[j]

$←− DP , P (I∗[j])← C∗[j]

17. L
$←− L

18. for i← 1 to q do
19. Di[0]← HL(Di[1], . . . , Di[l])
20. if Di[0] ∈ DP then bad← true, win← true, go Finalize
21. P (Di[0])← Ci[0]
22. D∗[0]← P−1(C∗[0])
23. for j ← 1 to l do
24. I∗[j]← P−1(C∗[j])
25. D∗[j]← I∗[j]⊕ C∗[j − 1]
26. if D∗[0] = HL(D

∗[1], . . . , D∗[l]) then win← true

Finalize

27. return win

Fig. 6. Game G2 (top) and G3 (bottom). Procedure (invoke) in Game G3 is identical to that in Game G2.

20

