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Abstract. The advantage in differentiating the sponge construction from a random oracle is upper
bounded by N22−(c+1), with N the number of calls to the underlying transformation or permutation
and c the capacity, resulting in an expected time complexity of N ∼ 2c/2. In this paper we prove that
the advantage in distinguishing a keyed sponge from a random oracle is much smaller in typical
use cases. In particular, when the data complexity is limited to M ≪ 2c/2, the expected time
complexity is about N ∼ min(2c/M, 2|K|), with |K| the length of the key. This improvement over
the indifferentiability bound allows decreasing the capacity (and thus the permutation width) for
a given required security level or achieving a higher security level for a given capacity. This new
bound has positive implications for all applications in which a sponge function is used for encryption
and/or authentication, or generally in conjunction with a key, including on platforms with limited
resources.
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1 Introduction

Sponge functions are versatile cryptographic primitives that can be used for hashing, message
authentication code (MAC) computation, stream encryption, authenticated encryption, pseudo-
random sequence generation and other applications. We refer to [6,5,7] for description of such
modes of use.

A sponge function consists of the application of the sponge construction to a fixed-length
permutation or transformation f . The sponge construction is sound in the sense that attacks that
do not exploit specific properties of f , i.e., generic attacks, are very unlikely to have success. More
exactly, the advantage in differentiating the sponge construction calling a random permutation
or transformation f from a random oracle is upper bounded by N22−(c+1) with N the number of
calls to the underlying transformation or permutation and c the capacity [4]. This implies that
with respect to generic attacks of complexity N , the sponge construction offers the same level
of security as a random oracle, as long as N22−(c+1) is negligible. Once N approaches 2c/2 this
is no longer the case and the indifferentiability bound does not give any guarantees. As pointed
out in [3,4], this is due to the existence of inner collisions in a sponge function.

It was noted in [3] that the expected workload of determining the inner state of a sponge
function from its output only is probably much higher than 2c/2. However, no lower bound
for this workload had yet been proven. In modes of use where a sponge function is used in
conjunction with a key, the difficulty of state recovery is crucial and the amount of sponge
function processing with a given key is usually too small for inner collisions to actually occur.
Hence, while the indifferentiability bound suggests that the capacity must be twice the size of
the key, the attacks in [3] suggest that a capacity slightly larger than the key may suffice. In
other words, the security level of a sponge function in a keyed mode is probably much higher
than 2c/2.

The success probability of state recovery was studied in [6], for which an upper bound was
proven. In this paper we generalize this to an upper bound for the advantage of distinguishing
a keyed sponge from a random oracle. Indistinguishability is a very strong notion of security as



it implies the inability of generating collisions, retrieving the state or guessing the key. Hence,
this upper bound allows keyed sponges to claim a higher security level for a given capacity or
to take a smaller capacity for a required security level in any application. Note in a sponge
function the sum of bitrate and capacity is equal to the width of the underlying permutation (or
transformation) and hence decreasing capacity results either in an immediate increase of bitrate
and hence efficiency or in a smaller permutation width and hence a smaller implementation.

In this paper we concentrate on the case that f is a permutation because of its practical
relevance. A similar bound can be proven for the case that f is a transformation and we leave
it as an exercise for the reader.

The remainder of this paper is organized as follows. First we provide the reader with the
definition of the sponge construction and of the keyed sponge in Section 2. This is followed by
a quick introduction of indistinguishability in Section 3. In Section 4 we prove the new bound
in a number of steps. Finally, in Section 5 we discuss the implications of this bound.

2 The sponge construction

The sponge construction [3] builds a function sponge[f, pad, r] with variable-length input and
arbitrary output length using a fixed-length permutation (or transformation) f , a padding rule
“pad” and a parameter bitrate r. A sponge function, that is, a function implementing the sponge
construction, provides a particular way to generalize hash functions and has the same interface
as a random oracle.

2.1 Definition

The permutation f operates on a fixed number of bits, the width b. The sponge construction
has a state of b bits. First, all the bits of the state are initialized to zero. The input message is
padded and cut into blocks of r bits. The padding rule shall be invertible and the last r-bit block
of the padded string shall be different from zero. We use the following notation: the padding of
a message M to a sequence of x-bit blocks is denoted by M ||pad[x](|M |).

After padding it proceeds in two phases: the absorbing phase followed by the squeezing phase:

Absorbing phase The r-bit input message blocks are XORed into the first r bits of the state,
interleaved with applications of the function f . When all message blocks are processed, the
sponge construction switches to the squeezing phase.

Squeezing phase The first r bits of the state are returned as output blocks, interleaved with
applications of the function f . The number of iterations is determined by the requested
number of bits.

Finally the output is truncated to the requested length ℓ. The sponge construction is illustrated
in Figure 1 and Algorithm 1 provides a formal definition. The notation ⌊x⌋n means that the
string x is truncated after its first n bits.

The value c = b− r is called the capacity. The first r bits of a state s are called its outer part
s and the last c bits its inner part ŝ . The inner part of the state is never directly affected by
the input blocks and never output during the squeezing phase. As said, the capacity c actually
determines the attainable security level of the construction [4].

2.2 Graph representation of sponge operations

We adopt the graph representation used in [3] for describing the knowledge of the adversary. We
consider the transformation f as a directed graph whose vertex set (called nodes) is Zb

2 = Zr
2×Zc

2

and whose edges are (s, f(s)). It has both 2b nodes and edges. From the node graph, we derive
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Fig. 1. The sponge construction

Algorithm 1 The sponge construction sponge[f, pad, r]
Require: r < b

Interface: Z = sponge(M, ℓ) with M ∈ Z∗
2, integer ℓ > 0 and Z ∈ Zℓ

2

P = M ||pad[r](|M |)
Let P = P0||P1|| . . . ||Pw with |Pi| = r
s = 0b

for i = 0 to w do
s = s⊕ (Pi||0b−r)
s = f(s)

end for
Z = ⌊s⌋r
while |Z| < ℓ do

s = f(s)
Z = Z||⌊s⌋r

end while
return ⌊Z⌋ℓ
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the (directed) supernode graph, with vertex set (called supernodes) equal to Zc
2. In this graph,

an edge (ŝ, t̂) is in the edge set if and only if ∃s, t such that (s, t) with s = (s, ŝ) and t = (t, t̂) is
an edge in the node graph. The set of supernodes is a partition of the nodes where a supernode
contains the 2r nodes with the same inner part.

The sponge construction operates on a chaining variable s and its operation can be seen as
a walk through the node graph of the chaining variable. We denote the chaining variable before
absorbing an input block pi by si. Its initial value is s0 = 0b = (0r, 0c). Then for each block pi,
it performs a two-step transition. First, it moves to the node s′ within the same supernode with
s′ = si ⊕ pi, and then it follows the edge starting from s′, arriving in si+1. After absorbing all
blocks of p it arrives in node s|p| with |p| denoting the number of blocks in p. Then it gives the
outer part of s|p| as output z0. For each additional block zi squeezed it follows the edge from
s|p|+i−1 arriving in s|p|+i and gives out the outer part of the latter as zi. Note that this can be
considered a special case of the above two-step transition if we extend p with blocks p|p|+i = 0r

for all i ≥ 0.
Clearly, the chaining variable si is completely determined by the first i blocks of p. We call

this a path to si. Or more exactly:

Definition 1 ([3]). First, the empty string is a path to the node 0b = (0r, 0c). Then, if p is a
path to node s and there is an edge ((s⊕ a, ŝ), t) in the node graph, p′ = p||a is a path to node t.

Note that although a path completely determines a node, there may be many paths to a node.
A pair of different paths to the same supernode is called an inner collision.

It follows from the above that the j-th output block zj of z = sponge[f, pad, r](p) is the
outer part of the node with path p||0rj . And so, given a path p (different from 0rj) to a node
s, one can find its outer part by a call to the sponge construction. We have s = zj with
z = sponge[f, pad, r](p′) and p′ and j given by p = p′||0rj such that p′ is a valid sponge input,
i.e., |p′| > 0 and p′|p′|−1 ̸= 0r. For a path of form 0rj there is no such p′ and hence the sponge
construction cannot be queried to obtain s.

2.3 The keyed sponge

We define a keyed sponge as a sponge function in which every input presented to the sponge is
first pre-pended with a secret key K:

KeyedSponge[f, pad, r,K](M, ℓ) = sponge[f, pad, r](K||M, ℓ).

We write Z = KeyedSponge(M, ℓ) and assume the parameters are clear from the context.

3 Indistinguishability from a random oracle

Indistinguishability deals with the ability of telling apart two systems, typically a concrete
construction and an ideal system. An adversary can query the two systems, one at the left and
one at the right, and a priori does not know which system is which. Based on the responses to
these queries it shall then decide whether the concrete construction is at the left or at the right.
If this is hard, the concrete construction can replace the ideal system in application without any
significant loss of security [11].

In this paper we prove upper bounds for the success probability of distinguishing a keyed
sponge from a random oracle. We use the definition of random oracle from [2]. A random oracle,
denoted RO, takes as input binary strings of any length and returns for each input a random
infinite string, i.e., it is a map from Z∗

2 to Z∞
2 , chosen by selecting each bit of RO(x) uniformly

and independently, for every x.
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The success probability depends on the guessing rule used by the adversary. Let RKS be the
set of observations for which she guesses that the system she is interacting with is the keyed
sponge. The success probability reads

Pr(success) = 1

2
+

1

2

∑
x∈RKS

(Pr(x observed|KeyedSponge)− Pr(x observed|RO)). (1)

To maximize the success probability, the adversary has to choose

RKS = {x : Pr(x observed|KeyedSponge) ≥ Pr(x observed|RO)}.

In that case ∑
x∈RKS

(Pr(x observed|KeyedSponge)− Pr(x observed|RO))

=
1

2

∑
x

|Pr(x observed|KeyedSponge)− Pr(x observed|RO)|.

The quantity 1
2

∑
x |Pr(x observed|KeyedSponge) − Pr(x observed|RO)| is called the distin-

guishing advantage.

4 Upper bounds for distinguishing a keyed sponge from a random oracle

In this section we prove an upper bound for the success probability of distinguishing a keyed
sponge from a random oracle below the indifferentiability bound. We start by defining the setting,
the way we model the knowledge of the adversary and the cost of queries. Then we prove that
in the absence of certain events (R̂-collisions and inner clashes, see Sections 4.3 and 4.6), the
advantage of telling apart the output of a sponge function and that of a random oracle is zero.
Hence the event x observed in Section 3 is an R̂-collision or an inner clash. We then provide
upper bounds for the probability that a query leads to an R̂-collision or inner clash assuming
no R̂-collisions or inner clashes occurred in previous queries. Finally, we combine these to prove
an upper bound on the advantage of an attack of given data and time complexity.

4.1 The setting

In the context of our proof the adversary shall distinguish between a keyed sponge and a random
oracle using their responses to queries. We assume that the adversary has no a priori knowledge
about f and that she can learn about f by making queries to it. Hence, the adversary shall
distinguish between two systems that each have two components, as illustrated in Figure 2:

– The system at the left is the combination of the function f and the keyed sponge function
x = KeyedSponge(M, ℓ). The adversary can make queries to both components separately,
where the latter in turn calls the former to construct its responses. These are the two different
interfaces to the system at the left.

– The system at the right consists of a random oracle RO and the function f , working inde-
pendently.

Clearly RO is independent of f , so the goal of this setting is to show that it is hard to see the
dependence of a keyed sponge on its underlying permutation f for an adversary who does not
know the key.
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Fig. 2. The distinguishing setup

We give a proof of indistinguishability for the case that f is a random permutation. A random
permutation operating on a certain domain is a permutation selected randomly and uniformly
from all permutations operating on that domain.

The keyed sponge function KeyedSponge(x, ℓ) provides one interface denoted by H, taking
a binary string x ∈ Z∗

2 and an integer ℓ and returning a binary string y ∈ Zℓ
2, the sponge output

truncated to ℓ bits. For its execution it can make calls to f and has access to a key K. The
permutation f has an interface f that takes as input an element s of Zb

2 and returns t = f(s) and
an interface f−1 that takes as input an element s of Zb

2 and returns t = f−1(s). The union of the
two interfaces f and f−1 is denoted by f±1. Note that the sponge construction in Algorithm 1
only uses the interface f .

At the right is the system with RO and f . It offers the same interface as the left system,
i.e., RO provides the interface H and returns an output truncated to the requested length.

4.2 The knowledge of the adversary

The adversary can keep track of what she learns from the responses received to the queries
she sent. We represent this knowledge in two graphs: one representing her knowledge on the
keyed sponge or random oracle: the so-called H-knowledge graph, and the other representing her
knowledge on f : the f -knowledge graph.

The f -knowledge graph is a subgraph of the one discussed in Section 2.2. It has a number of
edges corresponding to the past queries to f±1 and for each edge the adversary knows the value
of the node where it starts and the node where it arrives. We denote the set of nodes (and the
corresponding set of values) with an outgoing edge by Fo and the set of nodes with an incoming
edge by Fi.

We denote the set of supernodes (and the corresponding set of inner values) with an outgoing
edge by F̂o. Similarly, we denote the set of supernodes (and the corresponding set of inner values)
with an incoming or outgoing edge by F̂ . We say a node s is in F̂ if the supernode ŝ is in F̂ .

Figure 3 gives an example of an f -knowledge graph. In this example every supernode has 4
nodes. The nodes in Fo or in Fi are represented with gray circles. All the nodes displayed in the
figure are in F̂ .

The H-knowledge graph can be seen as a blinded subgraph of the one discussed in Section 2.2.
Here blinded means that the adversary does not know the inner part of its (super-)nodes except
the root. Also, the adversary only knows the outer parts of the nodes that are traversed by the
sponge function in the squeezing phase.
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Fig. 3. Example of f -knowledge graph

In the H-knowledge graph, we distinguish between nodes before or during the absorbtion of
the key K and nodes after the absorbtion of K. For this, we need the following definition.

Definition 2. The state sK is the state after absorbing the key K. We distinguish two cases,
depending whether |K| is a multiple of the rate r.

– If |K| is a multiple of r, sK is the node obtained after absorbing K. (Hence K is a path to
sK .) Then, ŝK is the set of nodes with the same inner value as that of sK .

– Otherwise, let us define K = K0||K1, where |K0| is a multiple of r and |K1| < r. If we note
sK0 the state of the sponge function after absorbing K0, then sK = sK0 ⊕ (K1||0r+c−|K1|) and
ŝK is the set of nodes with the same inner value and the same first |K1| bits as that of sK .

Since the key is fixed, any query to H starts from sK . So, starting from edges coming out
of ŝK and going downstream in the H-knowledge graph, we denote the set of nodes in the H-
knowledge graph with an incoming edge by Ri and the set of nodes with an outgoing edge by
Ro. Additionally, we denote the set of supernodes containing a node in Ri by R̂i. We say a node
s is in R̂i if the supernode ŝ is in R̂i.

We define R̂ as the union of ŝK and the set of nodes with inner value equal to those in Ri,
or equivalently

R̂ = ŝK ∪ R̂i.

Figure 4 gives an example of a H-knowledge graph. The nodes in Ro or in Ri are represented
with gray circles. The nodes in R̂ are explicitly delimited. In this example, the key spans exactly
two blocks.

The definitions of ŝK and R̂ are chosen to cover both the cases where the key length is a
multiple of the rate r and when it is not. In the latter case, a block containg both the last bits
of the key (K1 in Definition 2) and the first bits of the input message M must be absorbed. We
can think of this in two steps.

7



Fig. 4. Example of H-knowledge graph

1. The last |K1| bits of the key are XORed into the first bits of the state, namely sK =
sK0 ⊕ (K1||0r+c−|K1|) as in Definition 2.

2. The first block of the message has a length of only r − |K1| bits, which are XORed starting
from position |K1| in the state sK . The underlying permutation f is then applied on this
state.

The definition of ŝK incorporates this by considering not only the inner part of sK but also the
first |K1| bits. One can think of this as a special definition of the inner value in this particular
case. If a node s has as last c bits the last c bits of sK , then the inner parts are considered equal
if and only if the first |K1| bits are also equal.

As an example, assume that |K| < r so that the key does not fill even a single block. In this
case, sK = K||0r−|K|||0c and ŝK = {K||u||0c, u ∈ Zr−|K|

2 }.

4.3 When the adversary is successful

We now define two events, for which we consider the adversary to be successful if one of them
occurs.

Definition 3. An R̂-collision occurs if H is the keyed sponge and two edges of the H-knowledge
graph within R̂ arrive in two nodes with equal inner values.

An R̂-collision is a sub-case of an inner collision, which does not occur with a random oracle.
Hence, this allows the distinguisher to detect a keyed sponge.

Definition 4. An inner clash occurs if H is the keyed sponge and if due to a query we get
R̂ ∩ F̂ ̸= ∅.
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An inner clash does not happen in a random oracle. If an inner clash occurs in a keyed
sponge, the adversary can start comparing the H- and f -knowledge graphs. This allows her to
determine the inner part of a node in Ri and known outer part, and to distinguish the keyed
sponge from a random oracle quickly with some queries to f .

We neglect the cost of the adversary necessary to detect an R̂-collision or an inner clash.
Although we do not explicitly do this in the sequel, we could model this by saying that the
interface H is augmented with a Boolean piece of information telling that an R̂-collision in the
H-knowledge graph has occured. In the ideal world, RO always answers negatively and the
distinguisher is successful as soon as the keyed sponge acknowledges the R̂-collision. Similary,
the f±1 interface could tell if s ∈ R̂ or if t ∈ R̂ for a query t = f(s) or s = f−1(t). In the ideal
world, it would always be negative.

4.4 Key guessing

Unless the distinguisher correctly guesses sK , the inner values in R̂ are unknown to the distin-
guisher.

On the one hand, the distinguisher can have an a priori knowledge of sK . In a typical case,
|K| < c, hence ŝK is not uniformly distributed over all 2c possible inner values.

On the other hand, all the inner values in R̂i are completely unknown to the distinguisher
unless she makes a query to f (resp. to f−1) with an input s ∈ R̂ (resp. t ∈ R̂). If R̂ ∩ F̂ = ∅,
the probability from her point of view that a given inner value of a node in R̂i has a given value
ŝ is only determined by the number of queries made to f±1. This follows immediately from the
fact that she cannot determine the output values of f±1 until she actually makes a query to it.

From this, we deduce two main approaches for the distinguisher: either she tries to determine
sK or she tries to distinguish the keyed sponge not knowing the inner values in the H-knowledge
graph.

An important point to note is that a correct key guess implies an inner clash. The adversary
can verify that her guess is correct via queries to f . If so, she will simulate the keyed sponge
and hit a node in ŝK . Referring to Section 4.3, we assume that the adversary wins as soon as
she tests a state within ŝK (i.e., causing an inner clash), so this automatically includes a correct
key guess. (And this includes whether or not |K| is a multiple of r.)

In this subsection, we treat the case the distinguisher tries to determine sK and produce an
inner clash. Afterwards, the rest of the proof covers the case where sK is unknown (indicated
by “UK”).

Since f is a publicly known function, we assume that sK = g(K) is a function known to the
adversary. We allow her to evaluate g(K) directly (i.e., not to query f specifically for this), but
we do require that she tests if her guess is correct through the f interface. Referring to the next
section, this means that evaluating g(K) has no cost but checking whether the guess is correct
has a cost 1. Counting the cost of evaluating g(K) would depend on the number of blocks of K.
In the case |K| < r, g(K) = K||0r−|K|||0c and there would be no query necessary to evaluate it.
Hence, leaving this cost for free to the adversary allows to have a bound that does not depend
on r.

Unless |K| < r, the function ŝK = ĝ(K) that returns the inner value of sK can have collisions.
The range of ĝ(K) may have a size smaller than 2|K|. Let Pkey(i) be the probability of guessing
the key after i queries, or more precisely

Pkey(i) = Pr[ŝK ∩ F̂o ̸= ∅ after i queries].

The adversary can test first the values for which multiple values of K collide to the same ŝK .
So even if K is uniformly distributed over Z|K|

2 , we can have Pkey(i)−Pkey(i− 1) = mi2
|K| with
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mi the multiplicity of the i-th query. In the end, the security will be limited by the complexity
of the exhaustive key search 2|K|. Hence, in the case that |K| < c, the proportion of queries for
which mi > 1 will be small and we nevertheless assume that the expected time workload of key
guessing is 2κ/2 for κ ≈ |K|.

In the case |K| < r, we have sK = K||0r−|K|||0c and there is no collision, so κ = |K| if K is
chosen uniformly.

4.5 The cost of queries

The bound we provide in this paper is on the success probability of a distinguishing attack as a
function of the cost function that models the effort from the adversary. We define a cost function
similar to the one used in the indifferentiability bounds [4]. However, here the cost consists of
two variables, which model different aspects of an attack:
Data complexity This models queries sent to the keyed instance. In a setup attacking a con-

crete cryptosystem, this models the amount of access to the keyed instance. In practice one
can limit the adversary’s access to the instance. This is sometimes also referred to as the
online complexity.

Time complexity This models computations requiring no access to the keyed instance. In a
concrete setup the only limitation of the time complexity is the computing power and time
available to the adversary. This is sometimes also referred to as the offline complexity.

The unit of our cost function is the number of calls to f±1:
– The time complexity N is the number of queries to f±1, where only fresh queries are counted.

A query is not fresh if its response is already known due to previous queries to f±1.
– The data complexity M is the number of fresh calls to f due to queries to H as if H =

KeyedSponge. Here a call to f(s) is not fresh if it has already been made due to a prior
query to H.

Clearly, the number of edges in the f -knowledge graph is equal to N . Per definition, after a
number of queries to H with a total cost of M , the H-knowledge graph has M edges within R̂.

The convention of only counting fresh queries/calls only benefits to the adversary and is thus
on the safe side regarding security.

4.6 Conditions for uniform and independent output of the keyed sponge

We now prove the following lemma.
Lemma 1. In the absence of R̂-collisions in the H-graph and of inner clashes, the response to
a query to H is uniformly and independently distributed.

Proof. If H is the random oracle the lemma is true. Otherwise, the query results in a number
of new edges in the H-knowledge graph and its response is the concatenation of outer parts of
nodes traversed in the squeezing phase. The following reasoning applies for each of the edges
that arrives in such a node. Let s be the node where such an edge starts and t = f(s) where
it arrives. We compute the probability that the outer part of t has a particular value a, on
the condition that the new node t does not introduce an R̂-collision nor an inner clash. This
probability must be taken over the set F of functions f that are compatible with the knowledge
on f from all prior queries to f±1 and the sponge function. We will prove that this probability
is uniform: equal to 2−r independently of the value a.

Due to the requirements related to R̂-collisions and inner clashes, the set of possible values
for t is Zb

2 \ (Zr
2× (R̂i∪ F̂)) = Zr

2× (Zc
2 \ (R̂i ∪ F̂)). Clearly, this set contains an equal number of

elements for each given outer part and hence the outer part of t has a uniform distribution. ⊓⊔
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Without the requirement that t shall not result in an R̂-collision or inner clash, its possible
values are given by the set Zb

2 \ (Ri ∪ Fi). This follows immediately from the fact that s has
not been queried before and that f is a permutation. Note that the outer part of t is in general
not distributed uniformly. Hence, it is the requirement on the absence of R̂-collisions and inner
clashes that gives the sponge its uniformity in this setting.

From Lemma 1 it follows that the set of observations RKS in Equation (1) coincide with
the occurrence of an R̂-collision or an inner clash. As a random oracle has no finite inner state,
these cannot occur for a random oracle and we have:

Pr(success) = 1

2
+

1

2
Pr(R̂-collision or inner clash|KeyedSponge).

4.7 Success probabilities of queries

From Lemma 1 it follows immediately that an adversary can only have non-zero advantage in
distinguishing a keyed sponge function from a random oracle if she succeeds in generating an
R̂-collision in the sponge function or an inner clash between queries to f±1 and queries to H.

Assume the adversary has performed i fresh queries to f±1 and a number of queries to H
with a total cost of j. We now provide bounds on the success probability of the next query as a
function of i and j, for the three types of query, assuming that no R̂-collision or inner clash has
occurred yet (indicated by “NRC,NIC”).

Queries to H In the H-knowledge graph, a query results in the addition of a number of edges
and nodes. Rather than computing an upper bound for the success probability for a full query,
we compute it for the success probability for each edge added in the H-knowledge graph, i.e.,
per increment of the cost by 1. More specifically, we compute an upper bound on the probability
that an R̂-collision or an inner clash occurs when adding an edge to the H-knowledge graph.

Consider the addition of an edge from s to a new node t. In R̂, there are up to (2r − 1)j+2r

nodes in which t can create an R̂-collision, including all the nodes in the supernode ŝK . The total
number of values that t can take, compatible with f being a permutation, is at least 2r+c−(i+j).
Hence,

Pr(R̂-collision|NRC,NIC,UK) ≤ (2r − 1)j + 2r

2r+c − (i+ j)
. (2)

We start from a situation where there is no inner clash, so s ̸∈ F̂ . For the success probability
of an inner clash, we need to evaluate the probability that t ends up in F̂ . In the f -knowledge
graph, there are up to 2r nodes per supernode in which t can create an inner clash, for up to
2i different inner values. The total number of values that t can take, compatible with f being a
permutation, is at least 2r+c − (i+ j). Hence,

Pr(inner clash|NRC,NIC,UK) ≤ 2r+1i

2r+c − (i+ j)
. (3)

Queries to f±1 A query to f±1 cannot result in an R̂-collision. In the following lemma we
provide an upper bound to the probability of an inner clash of queries to f and f−1.

For f , if ŝK is unknown, either the adversary by chance chooses s ∈ R̂ or she does not. In
the first case, we compute the probability of choosing one of the inner values in R̂. There are
up to j + 1 such values and 2i values are known not to be in this set, so we get

Pr(s ∈ R̂|NRC,NIC,UK) =
j + 1

2c − 2i
.
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For the second case, in the H-knowledge graph there are up to 2r nodes per supernode in which
t can create an inner clash, for up to j + 1 different inner values. The total number of values
that t can take, compatible with f being a permutation, is at least 2r+c − (i+ j). Hence,

Pr(t ∈ R̂|s ̸∈ R̂,NRC,NIC,UK) =
2r(j + 1)

2r+c − (i+ j)
.

Hence,
Pr(s ∈ R̂ ∨ t ∈ R̂|NRC,NIC,UK) ≤ 2j + 2

2c − 2(i+ j)
. (4)

For f−1, the reasoning is the same, with the roles of s and t inverted. So,

Pr(t ∈ R̂ ∨ s ∈ R̂|NRC,NIC,UK) ≤ 2j + 2

2c − 2(i+ j)
.

4.8 Total success probability

We can now use Eq. (2), (3) and (4) to obtain an upper bound on the success probability of
distinguishing for given values of N and M .

The probability of an R̂-collision is given by the following lemma.

Lemma 2. The probability of an R̂-collision after a sequence of queries to H with cost M and
queries to f±1 with cost N is upper bounded by:

Pr(R̂-collision) ≤ 1− exp
(
−M2

2c+1

)
Proof. Let ij be the number of f±1 queries performed before query j to H. The probability that
an R̂-collision occurs in the H-knowledge graph is given by:

Pr(R̂-collision) = 1−
M−1∏
j=0

(
1− (2r − 1)j + 2r

2r+c − (ij + j)

)

= 1−
M−1∏
j=0

(
1−

j+1
2c − j

2r+c

1− ij+j
2r+c

)

Using the approximation log(1− ϵ) ≈ −ϵ for ϵ ≪ 1 and neglecting the last term in the denomi-
nator by exploiting ij + j ≪ 2r+c yields

Pr(R̂-collision) = 1− exp

−
M−1∑
j=0

j + 1

2c
− j

2r+c

 = 1− exp
(
−M(M + 1)

2c+1
+

M(M − 1)

2r+c+1
.

)

This is the same expression as the success probability for generating inner collisions in a random
P-sponge obtained in [3] and the advantage of differentiating a random P-sponge from a random
oracle in [4]. For M ≫ 1 and 2r ≫ 1, this simplifies to

Pr(R̂-collision) ≤ 1− exp
(
−M2

2c+1

)
.

⊓⊔
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An upper bound to the probability of an inner clash is given by the following lemma.

Lemma 3. The probability of an inner clash in a sequence of queries to H with cost M and
queries to f±1 with cost N for an adversary with no knowledge on the inner parts of the nodes
in R̂ is upper bounded by:

Pr(inner clash|UK) ≤ 1− exp
(
−2(M + 1)(N + 1)

2c

)
.

Proof. For generating inner clashes the success probability of the k-th query depends on whether
it is a query to H or to f±1. Let δk = 1 if the k-th query is one to f±1 and δk = 0 otherwise.
Let now ik be the number of f -queries performed before the k-th query and jk the number of
H-queries performed before the k-th query. We have ik =

∑
ℓ<k δℓ and jk =

∑
ℓ<k(1 − δℓ). We

can combine Eq. (3) and (4) into:

Pr(inner clash in k-th query|UK) ≤ 2(1− δk)ik + 2δkjk + 2

2c − 2k
.

The total inner clash probability is now upper bounded by:

Pr(inner clash|UK) ≤ 1−
M+N∏
k=1

(
1− 2(1− δk)ik + 2δkjk + 2

2c − 2k

)
.

Using the approximation log(1− ϵ) ≈ −ϵ for ϵ ≪ 1 and assuming k ≪ 2c yields

Pr(inner clash|UK) ≤ 1− exp
(
− 2

2c

M+N∑
k=1

(1− δk)ik + δkjk + 1

)
. (5)

Working out the sum in the righthand member of equation (5) yields∑
k

(1− δk)ik + δkjk =
∑
k

∑
ℓ<k

(1− δk)δℓ +
∑
k

∑
k<ℓ

δℓ(1− δk) = MN.

Filling this in in equation (5) yields the result. ⊓⊔

The success probability in Lemma 3 is under the condition that the adversary has no knowl-
edge on the inner parts of nodes in R̂. We must therefore add to this value the probability of
correctly guessing ŝK after N queries to f±1. Referring to Section 4.4, this is Pkey(N).

Combining this with Lemma 2 and Lemma 3 results in the main theorem of this paper.

Theorem 1. The advantage of distinguishing KeyedSponge[f,K] from a random oracle, with
f a random permutation and K uniformly distributed, is upper bounded by:

1− exp
(
−

M2

2 + 2(M + 1)(N + 1)

2c

)
+ Pkey(N) ,

where M is the data complexity, N the time complexity and Pkey(N) the probability of guessing
the key after N queries.

Inner collisions are likely to occur only if the data complexity M approaches 2c/2. If the data
complexity is limited to a value M ≪ 2c/2, the expected time complexity to distinguish a keyed
sponge from a random oracle is about N ∼ min(2c/M, 2κ).
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5 Discussion and conclusions

Theorem 1 has implications for all use cases where a keyed sponge function is used. In fact it
imposes an upper bound to the success probability of attacks that are generic in f . We discuss
some interesting use cases in the following subsections.

Note that upper bounds for the success probability of state retrieval attacks for keyed sponges
have been proved in [6]. Those bounds are tighter but are less generic than that of Theorem 1.

5.1 A safety margin beyond the indifferentiability bound

The bound provided in Theorem 1 only holds when the keyed sponge makes use of a random
permutation. When a concrete permutation is taken, no such bounds can be given. See for
example [9] and also [11] for discussions on this subject. However, it guarantees that using the
sponge construction excludes generic attacks with a success probability higher than the sum of
our bound and the success probability the attack would have for a random oracle.

The results of this paper show that one can expect a higher security against generic attacks
from a keyed sponge than from a sponge function with all its possible uses. In the latter case, the
worst-case success probability must be considered, which is determined by the sponge indiffer-
entiability result of [4] and a bound of N2/2c+1. The bound in this paper shows that when being
used in conjunction with a key, in many use cases the success probability of generic attacks is
much smaller. Hence, this can be seen as an extra safety margin.

5.2 A smaller size or an increased bitrate

A keyed sponge can be used for message authentication code (MAC) computation, stream en-
cryption, authenticated encryption and reseedable pseudorandom sequence generators [7,6]. In
these use cases, the results of this paper allow to decrease the capacity for the same level of
security. This benefit can be exploited in two possible ways. First, one can keep the bitrate con-
stant and design a permutation f with a smaller state size (r + c bits). This primarily benefits
to the implementation of sponge functions on resource-constrained platforms. Second, one can
keep the permutation (and its size) unchanged but increase the bitrate when used in a keyed
mode.

In many applications we can assume the implementation imposes an upper limit for M with
a given key K, e.g., M < 2a with a the usage exponent with a value typically between 20 and 40.
This may be due to physical constraints or imposed by the protocol. Assuming such a limit with
a ≪ c/2, the probability of R̂-collisions becomes negligible and the expected time complexity for
distinguishing without key guessing is 2c−a−1. In symmetric primitives that have a key, a typical
security requirement is that there should be no attacks faster than exhaustive key search. For a
keyed sponge this requirement translates to a lower bound for the capacity:

c ≥ |K|+ a+ 1. (6)

This is especially relevant in applications with constrained resources. Two examples of sponge
functions that are suitable for constrained resources are the sponge function family Quark [1]
and the small-width members of Keccak [8]. We illustrate the implications of the new bound
with Quark used in application requiring a keyed sponge with a required security level of 80-
bits against all attacks, hence with an 80-bit key. According to the 2c/2 indifferentiability bound
this would require a capacity of at least 160 bits, and one would choose d-Quark (r = 16 and
c = 160). Instead, if we assume a usage exponent of at most 39, Equation (6) requires a capacity
of only 120 bits. One can then opt either for a faster variant of d-Quark using a higher rate
or for a smaller member of the family, namely u-Quark (r = 8 and c = 128). In addition, one
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could also define a faster variant of u-Quark using the same permutation with r = 16 and
c = 120.
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